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COMMON FIXED POINTS OF TWO NONEXPANSIVE
MAPPINGS BY A MODIFIED FASTER

ITERATION SCHEME

Safeer Hussain Khan and Jong Kyu Kim

Abstract. We introduce an iteration scheme for approximating common
fixed points of two mappings. On one hand, it extends a scheme due to
Agarwal et al. [2] to the case of two mappings while on the other hand,
it is faster than both the Ishikawa type scheme and the one studied by
Yao and Chen [18] for the purpose in some sense. Using this scheme,
we prove some weak and strong convergence results for approximating
common fixed points of two nonexpansive self mappings. We also outline
the proofs of these results to the case of nonexpansive nonself mappings.

1. Introduction

Throughout this paper, N denotes the set of all positive integers. Let E be
a real Banach space and C a nonempty subset of E. A mapping T : C → C is
called nonexpansive self mapping if

‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ C. For the sake of simplicity, we call nonexpansive self mapping
as nonexpansive mapping. A mapping T : C → C is called contraction if there
is a k ∈ (0, 1) such that

‖Tx− Ty‖ ≤ k‖x− y‖
for all x, y ∈ C.

We know that Picard and Mann [12] iteration schemes for a mapping T :
C → C are defined by

(1.1)

{
x1 = x ∈ C,

xn+1 = Txn , n ∈ N
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and

(1.2)

{
x1 = x ∈ C,

xn+1 = (1− αn)xn + αnTxn, n ∈ N
respectively, where {αn} is in (0, 1). It is well-known that Picard iteration
scheme converges for contractions but may not converge for nonexpansive map-
pings whereas Mann iteration scheme converges for nonexpansive mappings as
well. Agarwal, O‘Regan, and Sahu [2] posed the question:

Is there any scheme for contraction mappings which converges at a rate
similar to Picard iteration scheme?

As an answer they introduced the following iteration scheme:

(1.3)





x1 = x ∈ C,

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn) xn + βnTxn, n ∈ N,

where {αn} and {βn} are in (0, 1). They proved that

‖xn+1 − p‖ ≤ k ‖xn − p‖ ,

‖xn+1 − p‖ ≤ (1− (1− k) αn) ‖xn − p‖ and

‖xn+1 − p‖ ≤ k[1− (1− k)αnβn] ‖xn − p‖
hold for (1.1) , (1.2) and (1.3) respectively, see Proposition 3.1 [2]. They con-
cluded from this that their scheme converges at a rate similar to that of Picard
iteration scheme and faster than the Mann iteration scheme for contraction
mappings and this provided a positive answer to the above question. It should
be noted that, of course, the comparison between the schemes is difficult be-
cause they depend on the choice of the sequences {αn} and {βn}.

On the other hand, let us state without error terms the iteration scheme
studied by Yao and Chen [18] for common fixed points of two mappings:

(1.4)

{
x1 = x ∈ C,

xn+1 = αnxn + βnTxn + γnSxn, n ∈ N,

where {αn} and {βn} are in [0, 1] and αn + βn + γn = 1. We note that (1.4)
reduces to Mann iteration scheme (1.2) when T = I or S = I.

The following Ishikawa type iteration scheme has been studied by various
authors for common fixed points of two mappings, see for example [5], [9], [10],
[15] and [17].

(1.5)





x1 = x ∈ C,

xn+1 = (1− αn)xn + αnSyn,

yn = (1− βn) xn + βnTxn, n ∈ N,

where {αn} and {βn} are in [0, 1]. This scheme also reduces to Mann iteration
scheme (1.2) when T = I or S = I.
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Analogous to the question posed by Agarwal, O‘Regan and Sahu, we ask:
Is there any scheme to compute common fixed points for two contraction

mappings which converges at a rate similar to Picard scheme and faster than
its counter parts?

As an answer, we introduce the following iteration scheme to compute the
common fixed points of two mappings.

(1.6)





x1 = x ∈ C,

xn+1 = (1− αn)Txn + αnSyn,

yn = (1− βn) xn + βnTxn, n ∈ N,

where {αn} and {βn} are in (0, 1).
Similar as for the first three iteration schemes, one can show that ‖xn+1 −

p‖ ≤ k(1−αnβn(1−k))‖xn−p‖ holds for (1.6), ‖xn+1−p‖ ≤ k(1−(1−αn)(1−
k))‖xn−p‖ holds for (1.4), and ‖xn+1−p‖ ≤ (1−αnβnk(1−k))‖xn−p‖ holds
for (1.5). One cannot know if these estimates are sharp but following [2], these
estimates suggest that our scheme also converges at a rate similar to that of
Picard (1.1) and Agarwal et al. (1.3) and faster than (1.2) , (1.4) and (1.5) for
contraction mappings and this provides a positive answer to the above question.

We see that (1.6) is independent of both (1.4) and (1.5). It is also to be
noted that (1.6) reduces to (1.3) for S = T and to (1.2) when T = I or S = I
(cf. [1]). Note also that neither of (1.4) and (1.5) reduce to (1.3) nor conversely.
It means that results proved by (1.4) and (1.5) do not include the ones proved
by (1.3), leave alone (1.6).

Note that (1.3) does not reduce to (1.2) but (1.6) does. It means that the
results proved by using (1.6) not only contain the corresponding results proved
by (1.3) but also cover the left over ones for (1.2).

Our purpose in the rest of the paper is to use the scheme (1.6) to prove some
weak and strong convergence results for approximating common fixed points
of two nonexpansive mappings.

Let us now gather some pre-requisites . Let S = {x ∈ E : ‖x‖ = 1} and E∗

the dual of E. The space E has : (i) Gâteaux differentiable norm if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in S; (ii) Fréchet differentiable norm (see e.g. [16]) if
for each x in S, the above limit exists and is attained uniformly for y in S and
in this case, it is also well-known that

(1.7) 〈h, J(x)〉+
1
2
‖x‖2 ≤ 1

2
‖x + h‖2 ≤ 〈h, J(x)〉+

1
2
‖x‖2 + b(‖h‖)

for all x, h in E, where J is the Fréchet derivative of the functional 1
2 ‖·‖2

at x ∈ X, 〈·, ·〉 is the dual pairing between E and E∗, and b is an increasing
function defined on [0,∞) such that limt↓0

b(t)
t = 0; (iii) Opial’s condition [13]

if for any sequence {xn} in E, xn ⇀ x implies that lim supn→∞ ‖xn − x‖ <
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lim supn→∞ ‖xn − y‖ for all y ∈ E with y 6= x and (iv) Kadec-Klee property if
for every sequence {xn} in E, xn ⇀ x and ‖xn‖ → ‖x‖ together imply xn → x
as n →∞.

Let δ be the modulus of uniform convexity. Recall that if E is a uniformly
convex Banach space, then (see e.g. [4])

(1.8) ‖tx + (1− t) y‖ ≤ 1− 2t(1− t)δ (‖x− y‖)
for all t ∈ [0, 1] and for all x, y ∈ E such that ‖x‖ ≤ 1, ‖y‖ ≤ 1.

A mapping T : C → E is demiclosed at y ∈ E if for each sequence {xn} in
C and each x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C and Tx = y [11].

Lemma 1.1 ([14]). Let E be a uniformly convex Banach space and 0 < p ≤
tn ≤ q < 1 for all n ∈ N. Suppose that {xn} and {yn} are two sequences of E
such that

lim sup
n→∞

‖xn‖ ≤ r,

lim sup
n→∞

‖yn‖ ≤ r and

lim
n→∞

‖tnxn + (1− tn)yn‖ = r

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.2 ([3]). Let E be a uniformly convex Banach space satisfying Opial’s
condition and let C be a nonempty closed convex subset of E. Let T : C → E
be a nonexpansive mapping. Then I − T is demiclosed with respect to zero.

Lemma 1.3 ([7, 8]). Let E be a reflexive Banach space such that E∗ has the
Kadec-Klee property. Let {xn} be a bounded sequence in E and x∗, y∗ ∈ W =
ωw(xn) (weak limit set of {xn}). Suppose limn→∞ ‖txn + (1− t)x∗ − y∗‖ exists
for all t ∈ [0, 1]. Then x∗ = y∗.

Lemma 1.4 ([4]). Let C be a nonempty bounded closed convex subset of a
uniformly convex Banach space and T : C → E be a nonexpansive mapping.
Then there is a strictly increasing and continuous convex function g : [0,∞) →
[0,∞) with g(0) = 0 such that

g (‖T (tx + (1− t)y)− (tTx + (1− t)Ty‖) ≤ ‖x− y‖ − ‖Tx− Ty‖
for all x, y ∈ C and t ∈ [0, 1].

2. Convergence theorems for nonexpansive self mappings

Now we prove weak and strong convergence results by starting with the
following. In the sequel, F denotes the set of common fixed points of the
mappings T and S.

Theorem 2.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let T and S be two nonexpansive self mappings of C. Let
{xn} be defined by the iteration scheme (1.6) where {αn}, {βn} are in [ε, 1− ε]
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for all n ∈ N and for some ε in (0, 1). If F 6= ∅, then lim ‖xn − q‖ exists and
limn→∞ ‖xn − Txn‖ = 0 = limn→∞ ‖xn − Sxn‖ .

Proof. Let q ∈ F. Then

‖xn+1 − q‖ = ‖(1− αn)Txn + αnSyn − q‖
≤ (1− αn) ‖Txn − q‖+ αn ‖Syn − q‖
≤ (1− αn) ‖xn − q‖+ αn ‖yn − q‖
≤ (1− αn) ‖xn − q‖+ αn (1− βn) ‖xn − q‖+ αnβn ‖Txn − q‖
≤ (1− αn) ‖xn − q‖+ αn (1− βn) ‖xn − q‖+ αnβn ‖xn − q‖
= ‖xn − q‖ .

Hence lim ‖xn − q‖ exists for any q ∈ F . Say it c.
Now

‖yn − q‖ = ‖βnTxn + (1− βn)xn − q‖
= ‖βn(Txn − q) + (1− βn)(xn − q)‖
≤ ‖xn − q‖

implies that

(2.1) lim sup
n→∞

‖yn − q‖ ≤ c.

Also from
‖Txn − q‖ ≤ ‖xn − q‖,

we get

(2.2) lim sup
n→∞

‖Txn − q‖ ≤ c.

Next,
‖Syn − q‖ ≤ ‖yn − q‖

gives by (2.1) that
lim sup

n→∞
‖Syn − q‖ ≤ c.

Moreover,

c = lim
n→∞

‖xn+1 − q‖ = lim
n→∞

‖ (1− αn) (Txn − q) + αn (Syn − q) ‖
gives by Lemma 1.1,

(2.3) lim
n→∞

‖Txn − Syn‖ = 0.

Now

‖xn+1 − q‖ = ‖ (1− αn)Txn + αnSyn − q‖
= ‖(Txn − q) + αn (Syn − Txn)‖
≤ ‖Txn − q‖+ αn ‖Txn − Syn‖
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yields that
c ≤ lim inf

n→∞
‖Txn − q‖

so that (2.2) gives

(2.4) lim
n→∞

‖Txn − q‖ = c.

In turn,

‖Txn − q‖ ≤ ‖Txn − Syn‖+ ‖Syn − q‖
≤ ‖Txn − Syn‖+ ‖yn − q‖

implies

(2.5) c ≤ lim inf
n→∞

‖yn − q‖.
By (2.1) and (2.5), we obtain

(2.6) lim
n→∞

‖yn − q‖ = c.

Thus c = limn→∞ ‖yn−q‖ = limn→∞ ‖ (1− βn) (xn − q)+βn (Txn − q) ‖ gives
by Lemma 1.1 that

(2.7) lim
n→∞

‖Txn − xn‖ = 0.

Now
‖yn − xn‖ = βn ‖Txn − xn‖

implies by (2.7) that

(2.8) lim
n→∞

‖yn − xn‖ = 0.

Using (2.3) , (2.7) and (2.8), we have

‖xn − Sxn‖ ≤ ‖xn − Txn‖+ ‖Txn − Syn‖+ ‖Syn − Sxn‖
≤ ‖xn − Txn‖+ ‖Txn − Syn‖+ ‖yn − xn‖

and so
lim

n→∞
‖xn − Sxn‖ = 0. ¤

Lemma 2.2. For any p1, p2 ∈ F, limn→∞ ‖txn + (1− t)p1 − p2‖ exists for all
t ∈ [0, 1] under the conditions of Theorem 2.1.

Proof. By Theorem 2.1, limn→∞ ‖xn − p‖ exists for all p ∈ F and therefore
{xn} is bounded. Thus there exists a real number r > 0 such that {xn} ⊆
D ≡ Br(0) ∩ C, so that D is a closed convex nonempty subset of C. Define
an : D → D as

an(t) = ‖txn + (1− t)p1 − p2‖
for all t ∈ [0, 1]. Then both limn→∞ an(0) = ‖p1 − p2‖ and limn→∞ an(1) =
limn→∞ ‖xn − p2‖ exist. Let t ∈ (0, 1). For each n ∈ N, define a mapping
Wn : D → D by

Wnx = (1− αn)Tx + αnS((1− βn)x + βnTx), ∀x ∈ D.
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It is easy to verify that

‖Wnx−Wny‖ ≤ ‖x− y‖ , ∀x, y ∈ D.

Set
Rn,m = Wn+m−1Wn+m−2 · · ·Wn,

and

bn,m = ‖Rn,m(txn + (1− t)p1)− (tRn,mxn + (1− t)p1)‖ , ∀n,m ∈ N.

Then it follows that ‖Rn,mx−Rn,my‖ ≤ ‖x− y‖ for all x, y ∈ D, Rn,mxn =
xn+m and Rn,mp = p for all p ∈ F. By Lemma 1.4, there exists a strictly
increasing continuous function g : [0,∞) → [0,∞) with g(0) = 0 such that

g(bn,m) ≤ ‖xn − p1‖ − ‖Rn,mxn −Rn,mp1‖
= ‖xn − p1‖ − ‖xn+m − p1‖ .

Since limn→∞ ‖xn − p‖ exists for all p ∈ F, we get

lim
n→∞

lim sup
m→∞

g(bn,m) = 0

and consequently,
lim

n→∞
lim sup
m→∞

bn,m = 0.

Finally, from the inequality

an+m(t) = ‖txn+m + (1− t)p1 − p2‖
≤ bn,m + ‖Rn,m(txn + (1− t)p1)− p2‖
= bn,m + ‖Rn,m(txn + (1− t)p1)−Rn,mp2‖
≤ bn,m + ‖txn + (1− t)p1)− p2‖
= bn,m + an(t),

it follows that
lim sup
m→∞

an+m(t) ≤ lim sup
m→∞

bn,m + an(t).

Since limn→∞ lim supm→∞ bn,m = 0, we get

lim sup
m→∞

am(t) ≤ lim inf
n→∞

an(t).

Hence limn→∞ ‖txn + (1− t)p1 − p2‖ exists for all t ∈ [0, 1]. ¤

Lemma 2.3. Assume that the conditions of Theorem 2.1 are satisfied. Then,
for any p1, p2 ∈ F, limn→∞ 〈xn, J(p1 − p2)〉 exists; in particular,

〈p− q, J(p1 − p2)〉 = 0

for all p, q ∈ ωw(xn), the set of all weak limits of {xn} .



980 SAFEER HUSSAIN KHAN AND JONG KYU KIM

Proof. Let t ∈ [0, 1]. Take x = p1 − p2 with p1 6= p2 and h = t(xn − p1) in the
inequality (1.7) to get:

1
2
‖p1 − p2‖2 + t 〈xn − p1, J(p1 − p2)〉

≤ 1
2
‖txn + (1− t)p1 − p2‖2

≤ 1
2
‖p1 − p2‖2 + t 〈xn − p1, J(p1 − p2)〉+ b(t ‖xn − p1‖).

As supn≥1 ‖xn − p1‖ ≤ M ′ for some M ′ > 0, it follows that

1
2
‖p1 − p2‖2 + t lim sup

n→∞
〈xn − p1, J(p1 − p2)〉

≤ 1
2

lim
n→∞

‖txn + (1− t)p1 − p2‖2

≤ 1
2
‖p1 − p2‖2 + b(tM ′) + t lim inf

n→∞
〈xn − p1, J(p1 − p2)〉 .

That is,

lim sup
n→∞

〈xn − p1, J(p1 − p2)〉 ≤ lim inf
n→∞

〈xn − p1, J(p1 − p2)〉+
b(tM ′)
tM ′ M ′.

If t → 0, then limn→∞ 〈xn − p1, J(p1 − p2)〉 exists for all p1, p2 ∈ F ; in partic-
ular, we have 〈p− q, J(p1 − p2)〉 = 0 for all p, q ∈ ωw(xn). ¤

We now give our weak convergence theorem.

Theorem 2.4. Let E be a uniformly convex Banach space and let C, T, S and
{xn} be as in Theorem 2.1. Assume that (a) E satisfies Opial’s condition, (b)
E has a Fréchet differentiable norm or (c) dual E∗ of E satisfies Kadec-Klee
property. If F 6= ∅, then {xn} converges weakly to a point of F.

Proof. Let p ∈ F. Then limn→∞ ‖xn − p‖ exists as proved in Theorem 2.1.
We prove that {xn} has a unique weak subsequential limit in F. Let u and v
be weak limits of the subsequences {xni} and {xnj} of {xn}, respectively. By
Theorem 2.1, limn→∞ ‖xn−Txn‖ = 0 and I −T is demiclosed with respect to
zero by Lemma 1.2, therefore we obtain Tu = u. Similarly, Su = u. Again in
the same fashion, we can prove that v ∈ F. Next, we prove the uniqueness. To
this end, first assume that (a) is true. If u and v are distinct, then by Opial’s
condition,

lim
n→∞

‖xn − u‖ = lim
ni→∞

‖xni − u‖ < lim
ni→∞

‖xni − v‖ = lim
n→∞

‖xn − v‖
= lim

nj→∞
‖xnj − v‖ < lim

nj→∞
‖xnj − u‖ = lim

n→∞
‖xn − u‖.

This is a contradiction so u = v.
Next, assume (b). By Lemma 2.3, 〈p− q, J(p1 − p2)〉 = 0 for all p, q ∈

ωw(xn). Therefore ‖u− v‖2 = 〈u− v, J(u− v)〉 = 0 implies u = v.
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Finally, assume that (c) is true. Since limn→∞ ‖txn + (1− t)u− v‖ exists
for all t ∈ [0, 1] by Lemma 2.2, therefore u = v by Lemma 1.3. Consequently,
{xn} converges weakly to a point of F and this completes the proof. ¤

Two mappings S, T : C → C, where C is a subset of a normed space E, are
said to satisfy the condition (A′) [6] if there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that
either ‖x− Sx‖ ≥ f(D(x, F )) or ‖x− Tx‖ ≥ f(D(x, F )) for all x ∈ C, where
D(x, F ) = inf{‖x− p‖ : p ∈ F = F (S) ∩ F (T )}.
Theorem 2.5. Let E be a real Banach space and let C, S, T, F, {xn} be as
in Theorem 2.1. Then {xn} converges strongly to a point of F if and only if
lim infn→∞D(xn, F ) = 0.

Proof. Necessity is obvious. Suppose that lim infn→∞D(xn, F ) = 0. By The-
orem 2.1, limn→∞ ‖xn − w‖ exists for all w ∈ F. Therefore limn→∞D(xn, F )
exists. But by hypothesis, lim infn→∞D(xn, F ) = 0, therefore we have

lim
n→∞

D(xn, F ) = 0.

Clearly, {xn} is a Cauchy sequence and therefore converges, say, to q. Since
limn→∞D(xn, F ) = 0, we get D(q, F ) = 0. Consequently, q ∈ F . ¤

Applying Theorem 2.5, we obtain a strong convergence theorem using the
scheme (1.6) under the condition (A′) as follows.

Theorem 2.6. Let E be a real Banach space and let C, S, T, F, {xn} be as
in Theorem 2.1. Let S, T satisfy the condition (A′) and F 6= ∅. Then {xn}
converges strongly to a point of F .

Proof. In Theorem 2.1, we proved that

lim
n→∞

‖xn − Sxn‖ = 0 = lim
n→∞

‖xn − Txn‖.
Thus from the condition (A′), we get

lim
n→∞

f(D(xn, F )) ≤ lim
n→∞

‖xn − Txn‖ = 0

or
lim

n→∞
f(D(xn, F )) ≤ lim

n→∞
‖xn − Sxn‖ = 0.

In both the cases,
lim

n→∞
f(D(xn, F )) = 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) = 0,
f(r) > 0 for all r ∈ (0,∞), therefore we have

lim
n→∞

D(xn, F ) = 0.

Now all the conditions of Theorem 2.5 are satisfied, therefore by its conclu-
sion {xn} converges strongly to a point of F. ¤
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Corollary 2.7. Let C be a nonempty closed convex subset of a uniformly
convex Banach space E. Let T be a nonexpansive mapping of C. Let {xn}
be defined by the iteration scheme (1.3) where {αn}, {βn} are in [ε, 1 − ε] for
all n ∈ N and for some ε in (0, 1). If F (T ), the set of fixed points of T, is
nonempty, then {xn} converges strongly to a fixed point of T .

Proof. Choose S = T in the above theorem. ¤

Corollary 2.8. Let C be a nonempty closed convex subset of a uniformly
convex Banach space E. Let T be a nonexpansive mapping of C. Let {xn} be
defined by the iteration scheme (1.2) where {αn} is in [ε, 1 − ε] for all n ∈ N
and for some ε in (0, 1). If F (T ), the set of fixed points of T, is nonempty, then
{xn} converges strongly to a fixed point of T .

Proof. Choose T = I in the above theorem. ¤

Remark 2.9. (i) Corollaries of the above type can also be obtained from The-
orems 2.4 and 2.5.

(ii) Theorems 2.4, 2.5 and 2.6 (and their corresponding corollaries as above)
can also be proved using the scheme (1.6) with error terms. The sequence {xn},
in this case, is defined by





x1 = x ∈ C,

xn+1 = anTxn + bnSyn + cnµn,

yn = a′nxn + b′nTxn + c′nυn, n ∈ N,

where {an}, {bn}, {cn}{a′n}, {b′n}, {c′n} are sequences in [0, 1] with 0 < ε ≤
an, a′n ≤ 1 − ε < 1, an + bn + cn = 1 = a′n + b′n + c′n and {µn}, {υn} are
bounded sequences in C.

3. Convergence theorems for nonexpansive nonself mappings

A subset C of E is called a retract of E if there exists a continuous map
P : E → C such that Px = x for all x ∈ C. Every closed convex subset of a
uniformly convex Banach space is a retract. A map P : E → E is said to be a
retraction if P 2 = P. It follows that if P is a retraction, then Py = y for all y
in the range of P.

Suppose that T, S : C → E are nonexpansive nonself mappings and P : E →
C is a nonexpansive retraction. We define {xn} as

(3.1)





x1 = x ∈ C,

xn+1 = P ((1− αn)Txn + αnSyn) ,

yn = P ((1− βn)xn + βnTxn) , n ∈ N,

where {αn} and {βn} are in (0, 1).
Now we outline the proofs of the theorems proved in the previous section

for nonexpansive nonself mappings.
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Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let T, S : C → E be two nonexpansive nonself mappings and
P : E → C a nonexpansive retraction. Let {xn} be defined by the iteration
scheme (3.1), where {αn}, {βn} are in [ε, 1 − ε] for all n ∈ N and for some
ε in (0, 1). If F 6= ∅, then lim ‖xn − q‖ exists and limn→∞ ‖xn − Txn‖ = 0
= limn→∞ ‖xn − Sxn‖ .

Proof. Let q ∈ F. Then

‖xn+1 − q‖ = ‖P ((1− αn)Txn + αnSyn)− Pq‖
≤ ‖(1− αn)Txn + αnSyn − q‖
≤ ‖xn − q‖ .

Hence lim ‖xn − q‖ exists. Say it c.
Now

‖yn − q‖ = ‖P (βnTxn + (1− βn)xn)− Pq‖
= ‖βn(Txn − q) + (1− βn)(xn − q)‖
≤ ‖xn − q‖

implies that lim supn→∞ ‖yn − q‖ ≤ c.
Also from ‖Txn − q‖ ≤ ‖xn − q‖, we get lim supn→∞ ‖Txn − q‖ ≤ c and

similarly lim supn→∞ ‖Syn − q‖ ≤ c. It then follows

(3.2) lim
n→∞

‖ (1− αn) (Txn − q) + αn (Syn − q) ‖ = c.

Thus by Lemma 1.1, limn→∞ ‖Txn − Syn‖ = 0. Now

‖xn+1 − q‖ = ‖P ((1− αn)Txn + αnSyn − q) ‖
≤ ‖Txn − q‖+ αn ‖Txn − Syn‖

yields that c ≤ lim infn→∞ ‖Txn − q‖ so that limn→∞ ‖Txn − q‖ = c.
On the lines similar to (3.2), we obtain

lim
n→∞

‖(1− βn) (xn − q) + βn (Txn − q)‖ = c

and, in turn, by Lemma 1.1 that

lim
n→∞

‖xn − Txn‖ = 0.

Similarly, we have,
lim

n→∞
‖xn − Sxn‖ = 0. ¤

Lemma 3.2. For any p1, p2 ∈ F, limn→∞ ‖txn + (1− t)p1 − p2‖ exists for all
t ∈ [0, 1] under the conditions of Theorem 3.1.

Proof. By Theorem 3.1, limn→∞ ‖xn − p‖ exists for all p ∈ F and therefore
{xn} is bounded. Thus there exists a real number r > 0 such that {xn} ⊆
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D ≡ Br(0) ∩ C, so that D is a closed convex nonempty subset of C. Define
an : D → D as

an(t) = ‖txn + (1− t)p1 − p2‖
for all t ∈ [0, 1]. Then we both limn→∞ an(0) = ‖p1 − p2‖ and limn→∞ an(1) =
limn→∞ ‖xn − p2‖ exist. Let t ∈ (0, 1). For each n ∈ N, define a mapping
Wn : C → C by

Wnx = P ((1− αn)Tx + αnSVnx)

Vnx = P ((1− βn)x + βnTx), ∀x ∈ C.

It is easy to verify that

‖Wnx−Wny‖ ≤ ‖x− y‖ , ∀x, y ∈ C.

The rest of the proof follows the lines similar to Lemma 2.2. ¤

The following theorems for nonexpansive nonself mappings can now be
proved with appropriate modifications in the proofs of Theorems 2.4, 2.5, and
2.6.

Theorem 3.3. Let E be a uniformly convex Banach space and let C, T, S and
{xn} be as in Theorem 3.1. Assume that (a) E satisfies Opial’s condition, (b)
E has a Fréchet differentiable norm or (c) dual E∗ of E satisfies Kadec-Klee
property. If F 6= ∅, then {xn} converges weakly to a point of F.

Theorem 3.4. Let E be a real Banach space and let C, S, T, F, {xn} be as in
Theorem 3.1. Then {xn} converges to a point of F if and only if

lim inf
n→∞

D(xn, F ) = 0,

where D(x, F ) = inf{‖x− p‖ : p ∈ F}.
Theorem 3.5. Let E be a real Banach space and let C, S, T, F, {xn} be as
in Theorem 3.1. Let S, T satisfy the condition (A′) and F 6= ∅. Then {xn}
converges strongly to a common fixed point of S and T .

Remark 3.6. The above theorems can also be proved by using the scheme (3.1)
with error terms.
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