• Title/Summary/Keyword: isotropic design

Search Result 209, Processing Time 0.036 seconds

Effect of Cell Shape on Design of CDMA Systems for Urban Microcells (도심 MICROCELL의 CDMA 시스템 용량에 대한 기지국 배치 효과)

  • Min, Seung-Wook;Choi, Gin-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3B
    • /
    • pp.153-160
    • /
    • 2007
  • Placing antennas of low power base stations below surrounding buildings, as in urban microcells, makes propagation characteristics strongly dependent on the building environment. As a result, propagation in these urban microcells is non-isotropic, so that the assumption of circular cells used in planning of conventional cellular sys toms is no longer valid. Assuming circular cells leads to a more conservative system design, implying more base stations. This work investigates the effect of cell shape, due to non-isotropic propagation, on the out-of-cell interference and Erlang capacity of CDMA system. Propagation is described by measurement derived models for low antennas in a rectangular urban street grid. The analysis is done for soft handoff protocols.

Design and fabrication of capsules with isotropic destruction intensity (등방 파괴 강도를 갖는 캡슐 설계 및 제작)

  • Lim, Tae-Uk;Cheng, Hao;Hu, Jie;Wang, Shu-Le;Jung, Won-Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.247-248
    • /
    • 2022
  • 3D printer-based self-healing capsules have been proposed to heal cracks by enabling various structural designs, repeatable fabrication, and strength analysis of the capsules. The Fusion Deposition Modeling (FDM) method was used to design, analyze, and produce new self-healing capsules that are widely used at low cost. However, PLA extruded from FDM has low interlayer adhesion energy, and thus strength varies depending on the angle of load applied to the laminated layer and the concrete structure, thereby degrading the performance of the self-healing capsule. Therefore, in this paper, the structure of the capsule manufactured by the FDM PLA method has isotropic strength was designed. In addition, the fracture strength in the x, y, and z directions of the load applied through the compression test was analyzed. As a result, it was confirmed that the newly proposed capsule design has an isotropic fracture strength of 1400% in all directions compared to the existing spherical thin-film capsule.

  • PDF

복합병렬형 로봇의 최적설계

  • 김찬수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.756-760
    • /
    • 1995
  • Optimal design of a hybrid parallel robot is investigated. In order to optimize the mechanism, new performance measures are introduced since use of the previous methods suffer form lack of the physical meaning due to the dimensional inhomogeneity. To overcome the problem, an Euclidean norm definition of each output space with homogeneous dimension is used to find input-output norm relation and derive new performance measures for each output spaces, that is, translational and rotational velocity, and derive new torque space. For illustion,the derived performance measures is applied to find the isotropic design of a Stewart platform robot which has condition number measures equal to one.

  • PDF

Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading (위상 최적화 기법을 이용한 충격하중에 대한 차량 탑재형 전력변환장치의 마운트 경량화 설계)

  • Ko, Dong-Shin;Lee, Hyun-Kyung;Hur, Deog-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.353-358
    • /
    • 2018
  • In this study, it is describe to an optimization analysis process for the weight reduction of the voltage converter in the electric vehicle charging systems. The optimization design is a technique that finds the optimal material distribution under a given material quantity constraint by combining the design sensitivity with the material properties and the mathematical optimization. Among the topology optimization, a lightweight design is performed by a solid isotropic material with penalization with simple formula and well-convergence. The lightweight design consists of three steps. As a first step, a finite element model for the basic design of the on-board voltage converter was constructed and static analysis was performed on the load. In the second step, the optimum shape is obtained for the lightweight by performing the topology optimization using the solid isotropic material with penalization applying the stiffness coefficient of the isotropic material to the static analysis result. As a final step, impact analysis was performed by applying a half-sinusoidal pulse shape impact load which satisfies the impact test standard of the vehicle-mounted part with respect to the optimum shape. In the topology optimization, the design domain was defined as the mounting bracket area, and the design technology was finally achieved by optimizing the mounting bracket to achieve a weight reduction of 20% over the basic design.

Influence of Anisotropic Behavior of Aggregate Base on Flexible Pavement Design Life (기층의 이방성 거동이 아스팔트 도로 설계수명에 미치는 영향)

  • Kim, Sung-Hee
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.187-194
    • /
    • 2009
  • This paper presents the development of transfer function accounting for cross-anisotropic behavior of aggregate base material for the pavement thickness design. The stress distributions predicted by nonlinear cross-anisotropic finite element program were realistic by eliminating excessive tensile stress at the bottom of the base layer and the critical pavement responses predicted by nonlinear cross-anisotropic model are higher than those predicted by linear or nonlinear isotropic models (Kim, 2004, Kim et at., 2005). Since the previously developed transfer functions such as Asphalt Institute and Chevron models, etc. were based on the critical responses obtained from linear isotropic model, those equations are not appropriate for the thickness design nonlinear cross-anisotropic base behavior. Therefore, the development of usable transfer functions for nonlinear cross-anisotropic model is ever more important. When the newly developed transfer functions were compared with AASHTO method for the thickness design, the newly developed transfer functions produce approximately 25mm reduced UAB thickness in AASHTO thickness design and this illustrates that linear isotropic model results in more conservative pavement design.

  • PDF

Volume Integral Equation Method for Multiple Isotropic Inclusion Problems in an Infinite Solid Under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 등방성 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.881-889
    • /
    • 2010
  • A volume integral equation method (VIEM) is introduced for solving the elastostatic problems related to an unbounded isotropic elastic solid; this solid is subjected to remote uniaxial tension, and it contains multiple interacting isotropic inclusions. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out; square and hexagonal packing of the inclusions are considered. The effects of the number of isotropic inclusions and different fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy and efficiency of the method are clarified by comparing the results obtained by analytical and finite element methods. The VIEM is shown to be very accurate and effective for investigating the local stresses in composites containing isotropic fibers.

Design of an Omni-directional mobile Robot with 3 Caster Wheels

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju;Yang, Sung-Il;You, Bum-Jae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.210-216
    • /
    • 2001
  • In this paper, design of a 3-degree-of-freedom mobile robot with three caster wheels is performed. Initially, kinematic modeling and singularity analysis of the mobile robot is performed. It is found that the singularity can be avoided when the robot has more than two wheels on which two active joints are located. Optimal kinematic parameters of mobile robots with three active joint variables and with four active joint variables are obtained and compared with respect to kinematic isotropic index of the Jacobian matrix of the mobile robot which is functions of the wheel radius and the length of steering link.

  • PDF

Kinematic optimal design and analysis of kinematic/dynamic performances of a 3 degree-of-freedom excavator subsystem (3 자유도 굴착기 부속 시스템의 기구학적 최적 설계와 기구학/동력학 성능 해석)

  • Kim, Whee-Kuk;Han, Dong-Young;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.422-434
    • /
    • 1997
  • In this paper, a two-stage kinematic optimal design for a 3 degree of-freedom (DOF) excavator subsystem, which consists of boom, arm and bucket, is performed. The objective of the first stage is to find the optimal parameters of the joint-actuating mechanisms which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the second stage is to find the optimal link parameters which maximize the isotropic characteristic of the excavator subsystem throughout the workspace. It is illustrated that kinematic/dynamic performances of the kinematically optimized excavator subsystem have improved compared to those of original HE280 excavator, with respect to three performance indices such as maximum load handling capacity, maximum velocity capability, and acceleration capability.

  • PDF

Comparative Studies of Topology Optimization Using Continuous Approximation of Material Distribution (재료분포의 연속적인 근사를 이용한 위상최적설계 방법의 비교 연구)

  • Lim, Young-Seok;Yoo, Jeong-Hoon;Terada, Kenjiro;Nishiwaki, Shin-Ji;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.164-170
    • /
    • 2006
  • To prevent the numerical instabilities in topology optimization, continuous approximation of material distribution (CAMD) is proposed to the homogenization design method (HDM) and the simple isotropic material with penalization (SIMP) method. The continuous FE approximation of design variables including high order elements is applied to the formulation of SIMP method. Numerical examples are presented to compare the efficiency of CAMD both in HDM and SIMP.

Analytic study on the realization of partially coherent Gaussian Schell-model beams with isotropic cross section and anisotropic degree of coherence function (등방성 빔 단면과 비등방성 공간 부분 코히어런스 특성을 갖는 가우시안 셀 모델 빔의 구현에 대한 해석적 연구)

  • Kim, Hwi;Kim, Tae-Soo;Choi, Kyung-Sik;Lee, Byung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.200-213
    • /
    • 2004
  • The realization of partially coherent Gaussian Schell-model beams with isotropic cross section and anisotropic degree of coherence function is investigated theoretically. An optical system is devised to transform diffused light generated by passing the Gaussian beam of the He-Ne laser thorough a rotating holographic diffuser to the partially coherent Gaussian Schell-model beam with isotropic cross section and anisotropic degree of coherence function. Analytic design equations are formulated and design examples are presented.