• Title/Summary/Keyword: isolation system

Search Result 1,775, Processing Time 0.027 seconds

Optimal residual generation using parity space approach for a position servo system (패리티 공간기법을 이용한 위치 서보계의 최적 잔차 발생)

  • 최경영;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1440-1443
    • /
    • 1997
  • The optimal residual generator based on parity relation approach for the fault detection and isolation of a arge diesel engine actuator position servo system is presented. The closed-loop residual generator is designed to have robustness against modeling errors and noise. Main purpose of the fault detection and isolation system in the process is to detect and isolate two important faults, i.e., actuatro fault and fault of speed sensor, that, if not detected and compensated, degrade the overall control system performance. Simulation results are give to show the practical applicability of the fault detecrtion and isloation scherme.

  • PDF

Neuro-Fuzzy Modeling Approach for Hybrid Base Isolaton System (하이브리드 면진장치의 뉴로-퍼지 모형화)

  • Kim Hyun-Su;Roschke P. N.;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.201-208
    • /
    • 2005
  • Neuro-Fuzzy modeling approach is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system consists of friction pendulum systems (FPS) and a magnetorheological (MR) damper. Fuzzy model of the M damper is trained by ANFIS using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses or experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

  • PDF

Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System (비선형 진동절연 시스템의 근사적 응답을 구하는 방법)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

Structure's base design for earthquake protection numerical and experimental study

  • Alsaif, K.;Kaplan, H.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.101-114
    • /
    • 2003
  • A base isolation system is proposed for earthquake protection of structures. The system incorporates spherical supports for the base, a specially designed spring-cam system to keep the base rigidly supported under normal condition and to allow it to move for the duration of the earthquake under the constraint of a spring with optimized non-linear characteristics. A single-story model is constructed to investigate the feasibility of the concept. Numerical simulations of the system as well as experimental results show that 95% reduction of the transmitted force to the structure can be achieved. To demonstrate the effectiveness of this isolation mechanism, the maximum dynamic bending stress developed at predetermined critical points within the frame of the structure is measured. Significant reduction of the dynamic stresses is obtained.

Centralized Kalman Filter with Adaptive Measurement Fusion: its Application to a GPS/SDINS Integration System with an Additional Sensor

  • Lee, Tae-Gyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.444-452
    • /
    • 2003
  • An integration system with multi-measurement sets can be realized via combined application of a centralized and federated Kalman filter. It is difficult for the centralized Kalman filter to remove a failed sensor in comparison with the federated Kalman filter. All varieties of Kalman filters monitor innovation sequence (residual) for detection and isolation of a failed sensor. The innovation sequence, which is selected as an indicator of real time estimation error plays an important role in adaptive mechanism design. In this study, the centralized Kalman filter with adaptive measurement fusion is introduced by means of innovation sequence. The objectives of adaptive measurement fusion are automatic isolation and recovery of some sensor failures as well as inherent monitoring capability. The proposed adaptive filter is applied to the GPS/SDINS integration system with an additional sensor. Simulation studies attest that the proposed adaptive scheme is effective for isolation and recovery of immediate sensor failures.

A Study on Base Isolation Performance of MR Dampers Using Clipped-Optimal Control (Clipped-Optimal Control을 사용한 MR 감쇠기의 면진성능에 관한 연구)

  • 고봉준;이종세
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.529-536
    • /
    • 2003
  • As large structures such as high-rise buildings and cable-stayed bridges become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a method to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, the seismic performance of MR dampers are studied and compared with that of the NZ system as a base isolation system. As the control algorithm of the MR damper, the clipped-optimal control(applied LQR method) is employed. A five-story building is modeled and the seismic performance of the two systems subjected to three different earthquakes is compared. The results show that the MR damper system can provide superior protection than the NZ system for a wide range of ground motions.

  • PDF

A Study on the Optimum Design of Base Isolated Structures (I) (면진 구조물의 최적설계에 관한 연구(I))

  • 정정훈;김병현;양용진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.339-347
    • /
    • 2001
  • A probabilistic optimum design method of the base isolation system consisting of linear spring, viscous damper and frictional element is presented. For the probabilistic approach, the base excitation is assumed to be a stationary Gaussian filtered random process. For optimum design, the objective function and constraints are derived based on the stochastic responses of the system. As a numerical example, the optimum design problem of a three-story base isolated shear type structure is formulated and solved by the sequential quadratic programming method. As a result, the effects of variation of design variables such as parameters of the base isolation system and the mass of base on the objective function and constraints are investigated and the optimum parameters of the base isolation system under study are derived.

  • PDF

Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic (퍼지 로직 시스템을 이용한 항공기 가스터빈 엔진 오류 검출에 대한 연구)

  • Mo, Eun-Jong;Jie, Min-Seok;Kim, Chin-Su;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2008
  • A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.

A Fault Detection and Isolation Method for Ammunition Transport Automation System (탄약운반 자동화 시스템의 고장 검출 및 분류 기법)

  • Lee, Seung-Youn;Kang, Kil-Sun;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.880-887
    • /
    • 2005
  • This paper presents a fault diagnosis(detection and isolation) approach for the Ammunition Transport Automation system(ATAS). Due to limited time and information available during its cyclic operation, the on-line fault detection algorithm consists of sequential test logics referring to the normal states, which can be considered as a kind of expert system. If a failure were detected, the off-line isolation algorithm finds the fault location through trained ART2 neural network. By the results of simulations and some on-line field test, it has been shown that the presented approach is effective enough and applicable to related automation systems.

Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection

  • Murase, Mitsuru;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.649-670
    • /
    • 2013
  • It is known that a base-isolated building exhibits a large response to a long-duration, long-period wave and an inter-connected system without base-isolation shows a large response to a pulse-type wave. To compensate for each deficiency, a new hybrid passive control system is investigated in which a base-isolated building is connected to another building (free wall) with oil dampers. It is demonstrated that the present hybrid passive control system is effective both for pulse-type ground motions and long-duration and long-period ground motions and has high redundancy and robustness for a broad range of disturbances.