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1. Introduction

Vibration isolation is a procedure by which the 

undesirable effects of vibration are reduced. It 

involves the insertion of a resilient member (or 

isolator) between the vibrating mass and the source of 

vibration to achieve a reduction in the dynamic 

response of the system under specified vibration 

excitation[1]. The suspension system of a car seat is 

an example of a vibration isolator. 

To resolve the conflict between small 

transmissibility and large static deflection, the use of 

non-linear springs is proposed. A vibration isolator 

with a non-linear spring was proposed and its 

characteristics investigated in previous research[2]. The 

proposed non-linear spring is composed of two 

symmetric linear springs depicted in Fig. 1. The 

structure of the spring is very simple compared to 

other non-linear springs(e.g., disc springs[3]), and the 

force-displacement relationship can be expressed 

easily, resulting in a straightforward dynamic analysis 
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ABSTRACT 

A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented 

in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the 

base of the isolator is harmonically excited, the response component of the mass at the excitation frequency 

was approximated using three different methods: linear approximation, harmonic balance, and higher-order 

frequency response functions (FRFs). The method using higher-order FRFs produces significantly more 

accurate results compared with the other methods. The error between the exact and approximate responses 

does not increase monotonously with the excitation amplitude and is less than 2%.
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of systems equipped with the spring.

If the non-linear relationship between the spring 

force and the displacement can be represented by a 

polynomial, the equation of motion of the vibration 

isolator with this non-linear spring can be solved 

approximately. 

In this study, the equation of motion of the 

non-linear isolator was solved approximately using 

three different methods: linear approximation, 

harmonic balance, and higher-order frequency response 

functions(FRFs), and the results were compared with 

numerical integration results which are assumed to be 

exact. 

2.  Description of Non-linear Equation- 

solving Methods

2.1 Harmonic balance method 

Because the harmonic balance method[4] is based 

on an analysis primarily applicable to periodic 

functions, it is particularly useful for computing 

approximations to periodic solutions. In this method 

the steady-state response of a non-linear system 

subjected to a harmonic input is expressed by a sum 

of harmonics. In a simple case the response is 

expressed as

               cos               (1)

The expression for the response is inserted into a 

non-linear equation, and by equating coefficients of 

each harmonic on both sides the amplitude of each 

harmonic is obtained.

Fig. 1  Proposed non-linear spring

2.2 Higher-order FRFs 

When a system with polynomial non-linearities is 

subjected to harmonic excitation

     cos  


 


 ,        (2)

the response can be expressed using higher-order 

FRFs as follows. Detailed explanation on the Volterra 

series can be found in References [5,6].

  


 





 



 
 




 



 
 






 



 
 






 



  ⋯

(3)

                                       

where  ⋯⋯  is a higher-order FRF.  

The arguments of the FRF are composed of  and 

. Denoting the FRF by  when  is repeated  

 times and  is repeated  times in the 

argument list, the above response can be expressed 

as:

  
  

∞



 
  

∞


  




 





             (4)

                                      

where    is a binomial coefficient equal to 

. Denote the complex ratio of the 

response component at the excitation frequency  to 

the excitation component at the same frequency as

. By considering only the terms associated with 

the input 


 in Eq. (3), an estimate of 
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for a non-linear system can be obtained:

 


   
 



 
 



 ⋯

 
  

∞

 
  

 


             (5)

                                             

  The equation of motion of a single 

degree-of-freedom system with cubic stiffness 

subjected to harmonic excitation can be written

    

 


 

      (6)

Substituting Eq. (3) into the above equation and 

equating the coefficients of the 
  terms on 

both sides, one can obtain

    
  


                   (7)

Similarly, equating the coefficients of the 
 





terms, one can obtain

        (8)

 
  



 (9)

                                             

Since a higher-order FRF is a complex valued 

function, it can be represented by magnitude and 

phase. Fig. 2 shows   for a non-linear system 

which will be considered later. 

  Extending this method of harmonic probing[7], all

Fig. 2 Magnitude and phase of   of a       

        non-linear system  

higher-order FRFs in Eq. (5) can be obtained.  Based 

on this result a higher-order FRF can be expressed in 

terms of lower-order FRFs. After all the FRFs in Eq. 

(5) are calculated, the response component at the 

excitation frequency,   can be obtained from Eq. 

(5).

3. Application of the Solving Methods

3.1 Proposed non-linear isolator

The proposed non-linear isolator is composed of 

two symmetric linear springs, a linear damper, and a 

base as depicted in Fig. 3. The linear springs have 

spring constant , free length , and are inclined by 

  from the horizontal base. When the upper support 

of the springs moves downward by , the vertical 

force applied on the support from the springs can be 

calculated easily. Fig. 4 illustrates the variation of the

Fig. 3  Considered vibration isolation system 
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spring force with  for    N/m,    m, 

and    rad(). The spring force 

reaches a maximum value of 1261 N at  = 0.239 

m. The figure shows that the stiffness of the spring 

decreases with the displacement of the support and 

becomes negative for large displacements.

When the base of the vibration isolator is excited 

as depicted in Fig. 3, the motion of the mass is 

described by the following equation.

                     (10) 

In Eq. (10) a dot on a letter represents differentiation 

with respect to time. c and   represent the 

damping constant and the spring force, respectively. 

The excitation of the base   is given by sin. 

The displacement of the mass,   is measured from 

the equilibrium position due to gravity. Letting 

   , Eq. (10) becomes

     sin              (11) 

Solving Eq. (11) for   numerically and adding  , 

the response of the mass is obtained. Computing a 

Fourier Transform of  , its frequency component 

at the excitation frequency  is obtained. The 

considered system is equipped with the above 

non-linear spring and has the parameters :   

kg,    Ns/m,     rad/s. 

3.2 Approximate solutions

The response of the mass for the harmonic 

excitation of the base was calculated by solving the 

equation of motion numerically. By computing a 

Fourier transform of the response, the response 

component at the excitation frequency  is obtained, 

which is assumed to be exact. The amplitude of the 

response component at the excitation frequency was 

also calculated approximately and the results 

compared based on three methods : linear 

approximation, harmonic balance, and higher-order 

FRFs.

3.2.1 Linear approximation

At the static equilibrium of the system, the 

deflection of the mass and slope of the tangent to 

the curve in Fig. 4 are found to be 0.13 m and 5028 

N/m, respectively. If the non-linear spring is 

approximated by a linear spring with this stiffness, 

the ratio of the amplitude of the mass to that of the 

base becomes 1.0022 based on linear theory. Thus the 

amplitude of the mass is    m for   

Fig. 4 Variation of the spring force with the 

deflection 

Fig. 5 Variation of the error with the excitation 

amplitude for linear approximation(dash-dot 

line), harmonic balance(dashed line), and 

higher-order FRFs(solid line)

- 26 -



Gun-Myung Lee 한국기계가공학회지 제 권 제 호: 19 , 6

����������������������������������������������������������������������������������������������������������������

m. Comparing this amplitude with the exact response 

component 0.049328 m, the error is 1.57%. Because 

the system is approximated as a linear system, the 

ratio does not change with the excitation amplitude. 

The response component of the mass at the excitation 

frequency and the error were calculated repeatedly for 

various excitation amplitudes. As the excitation 

amplitude increases, the error increases monotonously 

and reaches 40.65% for    m as depicted in 

Fig. 5.

3.2.2 Harmonic balance method 

In Eq. (11),   represents the non-linear spring 

force. If the origin of the coordinate axes is set to 

the static equilibrium position and the spring force 

around the origin is represented by a cubic 

polynomial   
 

, the coefficients  

are    N/m,   N/m2, and

  N/m3 based on a regression analysis in 

the range  ≤  ≤   m as depicted in Fig. 4. 

Then Eq. (11) can be written as 

 
 

  sin  (12)  

                                               

In Eq. (12) the unknown phase  is added to the 

excitation to obtain a single-term harmonic response 

  sin[8]. 

Inserting   into Eq. (12), the following equation 

is obtained.

sincossin


sin 

sin   sin

      

                                            (13)

Using the following trigonometric relations

sin  


 


cos                     (14)

sin  


sin 


sin                (15)

sin  sincoscossin       (16)

and equating the coefficients of sin and cos

terms on both sides, the following equations are 

obtained.

  




  cos         (17)

  sin                          (18)  

Solving these equations simultaneously produces 

   m and    rad. Because  

  sin  is the response for the excitation 

sin , the response for the excitation  

sin would be   sin . Adding  

  to  ,   is obtained with an amplitude of 

the response component at the excitation frequency of 

0.050044 m, resulting in an error of 1.45% which is 

slightly less than that for linear approximation. As the 

excitation amplitude increases, the error increases 

monotonously and reaches 36.41% for    m as 

depicted in Fig. 4. The error varies with the 

excitation amplitude similarly to, but slightly less than 

the case of linear approximation. If more harmonics 

are included for the solution of Eq. (12), more 

accurate responses could be obtained. However, the 

procedure is very complicated as depicted in 

Reference [8]. Therefore, an approximate solution with 

more harmonics has not been attempted in this 

research.

3.2.3 Higher-order FRFs  

If the spring force in Eq. (11) is approximated by 

a cubic polynomial, the equation of motion is 

expressed as

 
 

  sin      (19) 

The response component at the excitation frequency 
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was obtained using higher-order FRFs, as explained in 

Section 2.2, and   was added to obtain the 

frequency component of  . Increasing the 

maximum order of higher-order FRFs in Eq. (5), the 

above calculation was repeated. For the maximum 

order  ≥ , the obtained results converged. 

Consequently the maximum order     was used for 

future calculations. The response component at the 

excitation frequency was 0.049367 m for   

m, with an error of 0.079%. Comparing the result 

with the previous two cases, this method produces 

more accurate results. As the excitation amplitude 

increases, the error does not increase rapidly as in 

the previous cases. The error becomes a maximum of 

1.53% when    m as depicted in Fig. 5. This 

error is significantly smaller than those obtained by 

the two previous methods. When the excitation 

amplitude is increased beyond    m, the 

response diverges.

4. Conclusion

A non-linear vibration isolator composed of a 

non-linear spring and a linear damper was proposed 

in previous research.

When the base of the isolator is excited 

harmonically, the response component of the mass at 

the excitation frequency was calculated approximately 

using three different methods: linear approximation, 

harmonic balance, and higher-order FRFs. For the 

linear approximation method the error between the 

exact and approximate responses increases 

monotonously with the excitation amplitude. For the 

harmonic balance method the error varies with the 

excitation amplitude similarly to, but slightly less than 

the case of linear approximation. The method using 

higher-order FRFs produces significantly more 

accurate results compared to the other methods. The 

error does not increase monotonously with the 

excitation amplitude, and is less than 2%.
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