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Centralized Kalman Filter with Adaptive Measurement Fusion: its
Application to a GPS/SDINS Integration System with an Additional Sensor

Tae-Gyoo Lee

Abstract: An integration system with multi-measurement sets can be realized via combined
application of a centralized and federated Kalman filter. It is difficult for the centralized
Kalman filter to remove a failed sensor in comparison with the federated Kalman filter. All
varieties of Kalman filters monitor innovation sequence (residual) for detection and isolation of
a failed sensor. The innovation sequence, which is selected as an indicator of real time
estimation error plays an important role in adaptive mechanism design. In this study, the
centralized Kalman filter with adaptive measurement fusion is introduced by means of
innovation sequence. The objectives of adaptive measurement fusion are automatic isolation
and recovery of some sensor failures as well as inherent monitoring capability. The proposed
adaptive filter is applied to the GPS/SDINS integration system with an additional sensor.
Simulation studies attest that the proposed adaptive scheme is effective for isolation and
recovery of immediate sensor failures.

Keywords: Centralized Kalman filter, federated Kalman filter, innovation sequence, adaptive

measurement fusion, GPS/SDINS integration system with an additional sensor.

1. INTRODUCTION

The CKF (Centralized Kalman Filter) can be
applied to a system with multi-measurement sets to
determine an optimal estimation of global system
states. Although the CKF provides an optimal solution
to the estimation problem, the large number of states
often requires processing data rates that cannot be
maintained in practical real time applications.
Moreover, the estimate contains the measurement
history of all previous updates. If a sensor failure is
detected, it is difficult to remove the failed sensor data
from the estimate. For these reasons, parallel structures
can often provide improved failure detection and
correction, enhanced redundancy management, and
decreased costs for system integration. As such, there
has recently been considerable interest shown in
decentralized Kalman filter architectures.

One architecture that has received considerable
attention as a practical means of decentralization is
the FKF (Federated Kalman Filter). FKF differs from
the conventional Kalman filter because each
measurement is processed in local filters, and the
results are combined in a master filter. The local
filters run completely independent of each other,
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providing isolation between filters in the instance of
sensor failure. The primary disadvantage is that the
FKF does not give performance equal to that of the
CKF, even when local filters are based on true
models of the system. Furthermore, the FKF with the
existing system requires additional processor burden
to implement the local filters [1, 2].

The accuracy of Kalman filters depends on a priori
knowledge of system models and noise statistics. In
practical applications, priori knowledge is somewhat
inaccurate. The estimation accuracy will be degraded
from the theoretical prediction. The purpose of an
adaptive filter is to reduce or bound the gaps by
modifying or adapting the Kalman filter. A number of
approaches can be taken to adaptive filtering. Since
the basic source of uncertainty is due to unknown
priori statistics of noise, one can estimate them on-
line from the observed data. Another approach is to
estimate the optimal Kalman gain directly without
estimating the covariance of the process and
measurement noise [3-5].

In the navigation system, a number of researches
are to integrate the GPS (global positioning system)
into the INS (inertial navigation system) [6-10]. In
addition, the GPS/INS integration system employing
other navigation systems is designed to provide a
high level of accuracy and fault detection/isolation.
That can be realized via the application of a CKF, a
FKF and an adaptive filter [1, 2, 7].

In this study, first, the CKF and the FKF are
summarized. Secondly, the adaptive measurement
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fusion scheme is derived through the innovation
sequence based on the CKF. Lastly, the proposed
adaptive filter is compared with the CKF and the FKF
by simulations of the GPS/SDINS (strapdown inertial
navigation system), which is another sensor integration
system. The test results indicate that the suggested
method performs well against abrupt sensor failure.

2. CENTRALIZED AND FERDERATED
KALMAN FILTER

A linear system can be described as the space state
model.

x(k) =@k ~1)- x(k —1) + w(k — 1),

z(k) = H - x(k) + v(k), M
where
x(k)eR"  :state vector,
®(k) e R™" :transition matrix,
w(k)e R"  :system noise with zero mean,
and known covariance ~ (0,0),
z(k) e R?  :measurement vector,
HeR”™  :measurement matrix,
v(kye R”  :measurement noise with zero mean

and known covariance ~ (0, R).

A linear optimal estimation (Kalman filter) of the
state x(k) can be designed as follows [7, 11].

h/k=1)=D(k=1) - K(k—1),
P(k/k~1) =Dk -1)- P(k—1)- Dk —1)" +0, 2)
Py ' =Pk/k-)'+H -R7-H,

Py -3k = Pt/ k-1 &k /k-D+HT R 2(k),

where
x(k/k-1)eR"  :priori estimate of x(k),
(k)eR" :posteriori estimate of x(k),

P(k/k-1)eR™" :priori covariance matrix
of estimation errors,

P(k)eR™" :posteriori covariance

of estimation errors.
Multi-measurement sets are available as follows:
zi(ky=H; -x;(k)+v;(k),i=12,.,N 3)

where
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z;(k) e R :i-th measurement vector,
H; e RP™" :i-th measurement matrix,
v;(k)ye R? :i-th measurement noise ~ (0, R;).

The CKF and the FKF can be constructed as
follows [1, 2]:

Centralized Kalman Filter (CKF)
X (klk~-1)=® (k-1)-X.(k-1),

P.(k/k=1) =@ (k=1)- P.(k=1)- O (k=1)+ O, (4)
N
PO =P k/k-1" > H R H,,

i=1

Py 2.0 = Pk k=) R (kT k—1)

N
2 H R zi(k),
i=l

where
%, (k/k —1) e R" :priori estimate of x(k) in CKF,
0, € R" :covariance matrix of system noise
in CKF,

%.(k) e R™ :posteriori estimate of x(k) in CKF,
P.(k/k —1) e R"" :priori covariance matrix

of estimation errors in CKF,
P.(k) e R"™" :posteriori covariance

of estimation errors in CKF.

Federated Kalman Filter (FKF) with no-reset mode

Local Filter (i =1,2,...,N)

% (/e =1)= @;(k)- % (k - 1),
B(k/k-D)=®,(k) B(k-1)-®] )+Q,. ()
PG =Rk/k-D" +H] R H,,

Pk &i(k)= Bkl k=172, (k/ k- 1)

T -1
Master Filter
N
TAGREDW AR (6)
i=1

N
Py &0 =D B %(k),
i=l

where
%;(k/k —1) e R" :priori estimate of x(k)
in the i-th local filter,
Q, e R""™"i :covariance matrix of system noise
in the i-th local filter,
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%;(k) e R" :posteriori estimate of x(k)
in the i-th local filter,

P.(k/k—1)eR"™" :priori covariance matrix

of estimation errors in the i-th local filter,
P.(k) e R"™" :posteriori covariance

of estimation errors in the i-th local filter,
P (k)eR"™/ :fused covariance

in the master filter,

X r(k)e R"/ -fused estimate in the master filter.

In the FKF, the information is not shared between
the local filters. If a failure is detected at the local
filter, it is simply dropped from the master filter
solution.

3. ADAPTIVE MEASUREMENT FUSION

In this study, the adaptive measurement fusion
method is derived by the estimation of measurement
noise covariance.

The difference between the current measurement
and the priori estimate is called innovation sequence

c(k)eR? .

c(k)=z(k)~H - #(k/k-1)
= H -x(k)+v(k) - H-3(k  k ~1) 7
= H -[x(k) - £k [ k - D]+ v(k)

The covariance of the innovation sequence C(k)e

R7*P can be defined as follows [4, 7]:

C(k) = E[c(k)-c(k)" ]

8

=H-Pk/k-1)-H +R ®

The innovation sequence plays an important role in
the adaptive algorithm design and can be selected as
an indicator of the actual estimation errors. The
Kalman filter determines within its calculation
procedure the covariance matrix of estimation errors
that can be considered as a theoretical idea of
estimation accuracy. In practical applications, a gap
can be observed between actual estimation errors and
theoretically predicted ones. This can be explained by
the fact that the applied system models are never
exactly correct. Moreover, in all types of Kalman
filters, the monitoring of the innovation sequence can
be employed for fault detection, which relies on the
statistics of the noise sequences. The calculated
standard deviation is determined by the square root of
the diagonal elements of (8). Therefore, (7) may be
statistically bounded by three times the standard
deviation. This monitoring tends to work well with

failures that cause immediate and catastrophic
malfunction. However, since a common and slowly
changing bias is introduced to both the measurements
and the estimates, these failures can be undetected by
.

In order to provide information from actual
estimation errors, the innovation sequence can be
used. For stationary systems and noise, an estimation
of C(k) can be determined as follows:

k
C(k)= %Zc(k) (k)T
i=1
A k-1 4 1 r
or Clk)= TC(k—l)+;c(k)-c(k) )

In this study, the innovation sequences are derived
from the measurement sets and the priori estimates
based on the CKF, as follows:

¢ (k) = 2,y = H, 3,k Tk =1) .
= H, ek = 2 (k= D]+ v, (8) 19
i=12,.,N.

Using (8,9) and the covariance of (10) the real time
estimates can be determined as follows:

C(k)=H,-B,(k/k=1)-H] +R,, (1)
G,k =%éf(k—1)+%c,~<k>~c? *) (12)
i=12,.,N.

Substituting (12) into (11), the measurement noise
covariance can be estimated as follows:

R, = diag[C;(k)—H, - P.(k 1k —1)-H] ] (13)
i=12,..,N.

At the beginning of the estimation process the
evaluation of R, can be a negative definite due to
the lack of statistics for the estimation of C;(k). The

normalization procedure can be introduced as
follows:

If diag( R, )<0 , then diag( R, )=¢ . (14)
i=1,2,..,N.

where ¢ is a small positive. The measurement
update of the CKF can be represented as follows:

P.(k/k) =P.(k/ k-1 + R, (15)
P(k/kY ™ R (kiky= Pkl k-1 2 (k/k—1)
+R. 7z (b,
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Table 1. CKF with adaptive measurement fusion.

Time propagation
XA/ k-D)=D (k-1)-x,(k-1)

P(k/k=1)=® (k1) P.(k=1)- @] (k= 1)+ O,

Real time innovation sequence estimation
ciky=z(k)-H; - x.(k/k-1)

(k) :%‘iéi(k—ln%f(k)-cir(k)

Adaptive Measurement Fusion
Measurement noise covariance estimation

R, = daig[C;(k)~ H, - P.(k/k~1)-H] | with (14)
Fusion

N
Rc_l =2H1‘T 'Ri_l -H;
i=l

N
Rz (k)= H] R z,(k)

i=1

Measurement update
P =P.(k/k-)" + R
TAGREAGE
P.(k/k-1)"" 2 (k/k=1) +R. - z.(k)

where

N
R™'=YH-R"-H eR™,

i=l

N
Rz (k)= H Rz, (k). (16)

i=1

(16) is the case in which posteriori covariance and
estimates of the local filter in (6) are replaced by the
measurement covariance and measurements of the
sensors. When the CKF is similar to the Kalman filter
with one measurement, such as (2), it is difficult to
isolate the failed sensor.

Consequently, the fusion equation (16) or (6) has a
clear physical meaning. When the arbitrary sensor
shows high magnitude covariance of measurement
noise or estimation error in comparison with others,
the fusion mechanism doesn’t rely on these estimates
or measurements. In the opposite situation, the fusion
scheme does rely on the sensor. However, since the
conventional Kalman filter has fixed noise
covariance, the fusion equations are constructed by
initial conditions. For this reason, the adaptive
scheme (13) is useful. Generally, when the sensor
output fails or is inconsistent, (13) causes the
covariance measurement to increase. As a result, the
estimates are less affected by the failed sensor. That
signifies the conventional Kalman filter with (13)

obtains the fault tolerance function. In the FKF, these
problems can be solved through the isolation of local
filters. But since the performance of (13) for fault
tolerance is degraded with respect to time &, the
moving data or instantaneous value of the innovation
sequence can be used. However, these methods can
cause the global estimation accuracy to worsen
because the adaptive mechanism is incapable of
exactly reflecting noise statistics.

Table 1 summarizes the adaptive scheme based on
the CKF.

4. SIMULATION STUDY

The proposed adaptive scheme is applied to the
GPS/SDINS integration system with an additional
position sensor (such as radar) and compared with both
the CKF and the FKF. The structures of the FKF and
CKF with adaptive measurement fusion are shown in
Fig. 1. These filters are realized using the factored
covariance (U/D) form of the Kalman update equation.
The configurations of filters are consistent with the
indirect feedforward structure. The advantage of the
indirect feedforward scheme is that sensors are totally
independent on the integration filters [8, 11]. In
designing integration systems with INS, one of the
main concerns is the INS error model because it plays
an important role in implementing the filter,
accomplishing superior performance, and analyzing
the characteristics of the navigation error propagation
[6, 9]. In this study, the SDINS error model is derived
by the perturbation method with respect to horizontal
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Fig. 1. Configurations of filter.
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Fig. 3. Pure navigation errors (RER) of SDINS (3
times).
position, horizontal velocity and attitude.

Accelerometer and gyro biases are included.
Therefore, the error model is designed by the 13"
order. Consider the vertical channel of SDINS is
compensated by a baro-altimeter. Accelerometer and
gyro biases are modeled as random constants. As a
result, the CKF for the proposed scheme is
constructed as the 13" order filter. The local filter in
the FKF can be designed by reduced order in
comparison with the CKF. But in these tests, the
local filters are also modeled as the 13" order.

Fig. 2 shows the navigation scenario. The flight
time is 160 seconds. This trajectory is indicated in
[12] and [13]. In simulations, consider that SDINS
with the grade of 0.01[deg/h] provides navigation
solution with 50 [Hz]. Fig. 3 shows the pure
navigation error (RER, radial position error) of
SDINS in this trajectory. Suppose GPS has 10 [m]
C.E.P. (with instantaneous errors plotted in Fig. 4)
and gives 1[Hz] of navigation data. The errors and
the output frequencies of the applied additional
sensor are assumed as 1, 10, 100 [m] C.E.P. and 0.1,
1{Hz], respectively. Assume the error of the
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Table 2. Simulation results in normal cases (Monte
Carlo 30 times).

Centralized
Additional | Additional | Ceniralized | Federaed | fro”
Sensor Sensor Kalman Kalman st ﬂe]r
Output Error Filter Filter A(;a five
[Hz] [CEP] [CEP] [CEP] Fusign
[CEP]
1 1.189818 | 1.226809 1.360209
1 10 7.854931 | 7.749999 | 8.002511

100 10.761711 | 10.567632 | 10.665627

1 2681505 | 2.804357 | 8.502861

0.1 10 9941458 | 9.662509 | 10.269005

100 10.788662 | 10.654997 | 10.723402

additional sensor is similar in shape to GPS. In order
to analyze the filter with the failed sensor, abrupt
jump error (100 [m], 30 [sec]) and bias type error of
the additional sensor are defined in Fig. 5.
Simulations are evaluated through two cases. First,
when the navigation systems are under normal
conditions, the statistics are analyzed by means of 30
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simulations. Secondly, when an additional sensor has
10[m] C.E.P. with faults (Fig. 5) and is not isolated,
the performances of filters are investigated.

Table 2 shows the proposed filter, the CKF and the
FKF under the normal conditions. On the whole, all
of the filters demonstrate similar performances.
When GPS and the additional sensor have the same
error level and information period, the rate of
performance improvement is higher than in other
cases. This suggests that the outputs of integration
filters are affected by the accuracy difference
between sensors. When sensors cannot be
synchronized, the local filter in the FKF is aided by
the pure SDINS solutions or time update of the
Kalman filter. The CKF and the proposed filter can
only use the high frequency output sensor. The
proposed adaptive filter gives inferior performance to
others and generates near the high frequency output
sensor. One reason is that the FKF and the CKF are
well tuned through many simulations. On the contrary,
the adaptive mechanism may not exactly reflect in
noise statistics because the flight time is short. And
the estimate of measurement noises is constructed by
the high rate sensor (see Fig. 8 (¢) and 9 (¢)), because
the proposed filter frequently uses the high frequency
Sensor.

The proposed method does have the following
advantage. When another sensor is failed and is not
isolated, RERs of the filter and estimates of noise
covariance are shown in Fig. 6 and Fig. 7. In the CKF
and the FKF, when the sensor experiences jump fault,
the estimate is also increased. Once the fault
disappears, the output slowly converges to a
reasonable value. That means that the fault in the past
affects the estimate for a long time because of the
inherent performance of the Kalman filter. When the
fault is abrupt bias, the filter outputs always converge
toward near bias level. However, the filter employing
the adaptive fusion is insensitive to abrupt failures.
As such, the filter depends upon the sensor not failed
and the estimate maintains the reasonable value such
as indicated by the local filter with normal sensor in
the FKF. Consequently, the adaptive mechanism
causes the filter to isolate and recover the abrupt
failed signal.

In the given faults, the CKF, the FKF and the
proposed filter can isolate and recover by means of
innovation sequence monitoring in (7). The FKF has
the local filter outputs in Figs. 6 and 7. Therefore, the
FKF may choose appropriately regarding faults. And
the advantage of the CKF with adaptive measurement
fusion is the self isolation and recovery of the abrupt
failed sensors.

Figs. 8 and 9 show the performances of filters with
different frequency of measurements, which is
similar to Figs. 6 and 7. However, because the failed
sensor has low frequency, the error level is lower than

in previous cases. And figures show that the local
filter has the SDINS pure solutions and time update
in the FKF.

5. CONCLUSIONS

The FKF makes better choices relating to sensor
failure than the CKF. In this study, the adaptive
measurement fusion in the CKF is proposed for
improving the isolation and recovery ability of some
sensor failures. Via the development of algorithm and
simulations of the GPS/SDINS/additional sensor
integration system, the main advantages and
disadvantages of the suggested adaptive filter are as
follows.

(1) The abruptly failed (not failed) sensor can self-
isolate (recover).

(2) The modification (by calculated covariance,
moving data, instantaneous data and so on) is simple
for desired applications.

(3) The global estimation accuracy can be
degraded.

(4) If multi-measurement sets do not show the
same rate output, then the estimate can depend upon
the high rate output.

Remark 1: The adaptive scheme can be applied to
one measurement system in (1) and (2). In this case,
the abrupt jump signal can be isolated. However, the
recovery time is proportional to the jump time.
Moreover, the recovery cannot be accomplished. If
the abrupt jump is the bias type (Fig. 5(a)), then the
estimate will follow the fault signal. Therefore, the
multi-measurement sets are useful. This is indicated
in [7] and [8].

Remark 2: The suggested adaptive method can be
directly developed for local filters in the FKF.

Remark 3: To apply the master filter in the FKF,
the fusion of priori estimates is required.

Remark 4: Both GPS and the additional sensor
can fault simultaneously, but the SDINS may be
available. INS does not require any external devices
or signals and is not affected by any external
environments. If the outage of sensors is short, the
time update of the Kalman filter can be used, but the
performance may be degraded.
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