DOI QR코드

DOI QR Code

A Fault Detection and Isolation Method for Ammunition Transport Automation System

탄약운반 자동화 시스템의 고장 검출 및 분류 기법

  • 이승연 (충남대학교 전자공학과) ;
  • 강길순 (충남대학교 전자공학과) ;
  • 유준 (충남대학교 전자공학과)
  • Published : 2005.10.01

Abstract

This paper presents a fault diagnosis(detection and isolation) approach for the Ammunition Transport Automation system(ATAS). Due to limited time and information available during its cyclic operation, the on-line fault detection algorithm consists of sequential test logics referring to the normal states, which can be considered as a kind of expert system. If a failure were detected, the off-line isolation algorithm finds the fault location through trained ART2 neural network. By the results of simulations and some on-line field test, it has been shown that the presented approach is effective enough and applicable to related automation systems.

Keywords

References

  1. J. J. Gertler. 'Survey of model-based failure detection and isolation in complex plants,' IEEE Contr. Syst. Mag., vol. 8, pp. 3-11, 1988 https://doi.org/10.1109/37.9163
  2. R. J. Patton, Fault diagnosis in dynamic systems, Prentice Hall, pp. 22-45, 1989
  3. R. Isermann, 'Model based fault detection and diagnosis methods,' Proc. Acc. pp. 1605-1609, 1995
  4. B. Freyermuth, 'Knowledge based incipient fault diagnosis of industrial robots,' IFAC Proc. Fault Detection, Supervision and Safety for Technical Process, Baden-Baden, Germany, pp. 369-375, 1991
  5. M. A. Kramer and J. A. Lenard, 'Diagnosis using back propagation neural networks-analysis and criticism,' Computers Chem. Engng., vol. 14, no. 12, pp. 1323-1338, 1990 https://doi.org/10.1016/0098-1354(90)80015-4
  6. R. Doraiswami and J. Jiang, 'Performance monitoring in expert control systems,' Automatica, vol. 25, no. 6, pp. 799-811, 1989 https://doi.org/10.1016/0005-1098(89)90049-6
  7. C. H. Pagli, Artificial Neural Networks for Intelligent Manufacturing, Chapman and Hall, 1994
  8. J. Banks, et al., Discrete-Event System Simulaion, Prentice-Hall, pp. 12, 2001
  9. P. J. Tavner and J. Penman, Condition monitoring of electrical machines, Letchworth, UK: Research Studies Press, 1987
  10. R. Isermann and B. Freyermuth, 'Process fault diagnosis based on process model knowledge-Part I: Principles for diagnosis with parameter estimation,' J. Dynamic Syst., Measurement, Contr., vol. 113, pp. 620-626, 1991 https://doi.org/10.1115/1.2896466
  11. R. Isermann, 'Fault diagnosis of machines via parameter estimation and knowledge processing,' Automatica, vol. 29, no. 4, pp. 815-835, 1993 https://doi.org/10.1016/0005-1098(93)90088-B
  12. L. Ljung, System identification theory for the user, Prentice Hall, 1987
  13. M. T. Hagan, Neural Network Design, PWS Publishing company, 1996
  14. 이인수, 신필재, 전기준, 'ART2 신경회로망을 이용한 선형 시스템의 다중고장진단,' 제어.자동화.시스템공학 논문지, 제3권, 제3호, pp. 244-251, 1997
  15. 임호순, 정길도, '진동 신호 이용 모델 기반 모터 고장 검출 시스템 개발,' 제어.자동화.시스템공학 논문지, 제9권, 제11호, pp. 874-882, 2003 https://doi.org/10.5302/J.ICROS.2003.9.11.874