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Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic
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Abstract : A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for
fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed
from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path
measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred
directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference
logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy
inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.
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I. Introduction

In the last twenty years, gas turbine performance diagnostics
has attracted the attention of many researchers. The gas turbine
performance diagnostics involve the accurate detection, isolation,
and estimation of engine module performance, engine system
problems and instrumentation problems using measurements from
the engine gas path. Discernable changes in gas path
measurements from a baseline “good engine” are used to obtain
changes in engine performance from the baseline state.
Historically, this type of analysis has been treated as a system
identification problem and the analysis performed using Kalman
filters. More recently, neural networks have also been used to
solve the fault isolation problem. While the Kalman filter
literature focuses on long-term deterioration of the engine
modules, the neural network literature focuses on single-fault
isolation following a step or rate change in engine gas path
measurements [1].

Once a trend change has been detected, a trained neural
network can isolate the engine fault [2]. The Kalman filter can
also be configured to isolate single faults following a trend change
[3,4].

In this paper, we focus on the subset of the performance
diagnostics problem involving isolation of the faulty module in
the gas turbine once a trend shift in one or more of the gas path
measurements has been detected. Knowledge of the faulty module
reduces maintenance costs as only the faulty module needs to be
opened and inspected, and not the whole engine. It is assumed that
only one module is defective. The analysis can be looked on as a
way to automate the ECM charts to perform module fault
isolation.

A typical twin-spool turbojet engine has five modules: fan

(FAN), low-pressure compressor (LPC), high-pressure
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Fig. 1. Atypical twin-spool turbojet engine.

compressor (HPC), high-pressure turbine (HPT), and low-
pressure turbine (LPT). Most damages to the engine manifest
themselves as changes in either the module efficiency or flow
capacity/area. ECM (Engine Condition Monitoring) trend plot
reports provided by jet engine manufacturers such as Pratt and
Whitney are routinely used by airlines for gas turbine performance
diagnostics [5]. These reports summarize the relationships
between measurement deviations of gas path parameters from a
baseline model to an engine fault. Experienced power plant
engineers can often look at a given trend shift in the measurement
deviations and isolate the fauity module or component using the
ECM trend plot reports. However, automation of the process
allows the isolation to be performed as each measurement data
point becomes available and may prevent expensive maintenance
events.

Typical gas path measurements are exhaust gas temperature
(EGT), low-spool rotor speed (N1), high-spool rotor speeds (N2),
and fuel flow (WF). These four measurements are often called
the four basic parameters and the instrumentation to measure them
is available on most new and old engines. However, for a fault
isolation system to be widely applicable, it should be able to
function with only four measurements [6]. The typical ECM trend
plot reports can show any relating changes in measurement deltas
for the four basic parameters with the faulty module. Since ECM
uses steady state cruise in-flight data taken either automatically by
the aircraft computers or manually by the flight crew. This data is
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written into computer files, corrected to sea level static condition,
and compared with the baseline of a particular engine/aircraft
configuration. The difference between the in-flight data and the
baseline is referred to as a “raw” delta. Since these deltas are
plotted in the form of trends to identify possible engine
malfunctions and the results of the module by module
performance analysis of changes in efficiency and flow capacity
relative to a baseline engine, they are only approximately correct
because they do not account for uncertainties in  the
measurement process. In this paper, we focus on isolation of the
faulty module in the gas turbine engine once a trend shift in one
or more of the gas path measurements has been detected [7,8].

11. Fuzzy Logic System

The objective of this paper is to show how a fuzzy logic
inference system can accurately isolate the module faults from
measurement deltas, while accounting for uncertainty. There are
several reasons for selecting fuzzy inference logic system for this
application [8]. First, the fuzzy logic system is a knowledge based
system that has ability to handle uncertainty. Second, the fuzzy
logic system does not require estimation of the system parameter.
Third, the fuzzy logic rule base contains control strategies that are
applicable to a wide range of qualitatively- similar scenarios.
Conventional fault isolation techniques may indicate them
differently in the engine performance criteria. However, with
system simplicity the fault isolation strategies for both cases
remain the same qualitatively, the rule base determines proper
control actions based on the magnitude of the input/output
relationship. A typical multi-input single-output (MISO) fuzzy
inference logic system performs a mapping from ¥ € R™ to
W e R using four basic components: rules, fuzzifier, inference
engine and defuzzifier [9].

The Inputs to the fuzzy inference logic system are measurement
deltas and outputs are engine module faults, and the inputs have
four measurements represented by y and five engine faults
represented by x. The objective is to find a functional mapping
between y and x. Mathematically this can be represented as
X=F(y) whete X ={FAN,LPT,HPC,HPT,LPTY and
Y = {AEGT,AWF,AN1,AN2}". Each measurement delta has
uncertainty. FAN, LPC, HPC, HPT, and LPT are fuzzy sets
denoting the five engine modules. Each fuzzy set has degrees of
membership ranging from zero to one. In this paper, we are only
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interested in the module containing the fault. Therefore, we do not
further decompose the module fuzzy sets using linguistic variables.
The measurement deltas AEGT,AWF,AN1,AN2 are also

treated as fuzzy variables. To get a high degree of resolution, they
are further split into linguistic variables. For example, consider
AEGT as a linguistic variable. It can be decomposed into a set
ofterms T(AEGT)={High-, Medium-, Low-, Negligible, Low+,
Medium+, High+} where each term in T(AEGT) is
characterized by a fuzzy set in the universe of discourse
U(AEGT) = {-20°C, 20°C}, which is selected to include values
in the vicinity of the ECM trend plot reports.

The other three measurement deltas are defined using the same
set of terms as AEGT, spanning the following universes of
discourse: U(AWF) ={-4.0%, 4.0%}; U(AN2) ={-1.5%,
1.5%}; U(AN1) ={-1.5%, 1.5%}. Since the influence
coefficients on which the ECM trend plot reports are based on a
linear model, the diagnostic system should be limited to smail
measurement deltas. In addition, measurement deltas larger than
covered by the universe of discourse will represent a large fault
indicative of a catastrophic failure.

Fuzzy sets with Gaussian membership functions are used.
These fuzzy sets can be defined using the following equation:

plx) =3y M

Where m is the midpoint of the fuzzy set and o is the
uncertainty (standard deviation) associated with the variable.
Tablel.gives the linguistic measure associated with each fuzzy set
and the midpoint of the set for each measurement delta. The
midpoints are selected to span the region ranging from a perfect
engine (all measurement deltas are zero) to one with significant
damage. The fuzzy set corresponding to “high” are defined
slightly differently to account for the open-ended nature of the
linguistic variable.

w(x)=e Dy <x OR x<my,, )

u(x)=myy, <x OR x<my, 3)

The Fuzzy logic system employs a series of IF-THEN rules that
utilize a strategy resembles to that of a PD controller since the
rules are predicated on errors and error rates. Rules for the fuzzy
system are obtained by fuzzification of the numerical values in the
ECM trend plot reports using the following procedure [10]:

E LA AE 1. A set of four measurement deltas corresponding to a given
Table 1. Fuzzy sets. module fault is input to the FLS and the degree of membership
Linguistic Midpoints
Measure EGT | WE(%) | NI N2 £ 2 9 FE =9 Alzvld w7 £
High(H+) 20 4 15 15 Table 2. Rules for fuzzy inference logic system.
Medium(M-+) 13.3 27 1 1 Module EGT WF N2 N1
Low(L+) 6.6 13 0.5 0.5 FAN M- M- L- H+
Negligible 0 0 0 0 LPC M+ M+ L+ L+
Low(L-) 6.6 -13 -0.5 -0.5 HPC H+ M+ N N
Medium(M-) 13.3 2.7 -1 -1 HPT M+ . H+ M- N
High(H-) 20 -4 -1.5 -1.5 LPT N H- H+ H-
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of the elements of AEGT,AWF,AN1,AN2 are obtained.
Therefore, each measurement has seven degree of
memberships based on the linguistic measures in Table 2.

2. Bach measurement delta is then assigned to the fuzzy set with
the maximum degree of membership.

3. One rule is obtained for each module fault by relating the
measurement deltas with maximum degree of membership to a
module fault.

These rules are shown in Table 2. The linguistic symbols used
in this table are defined in Table 1.

These rules can be read as follows for the HPC module:
IF

AEGT ishigh + AND

AWF  is medium + AND

AN2 isnegligible AND

AN1 is negligible
THEN

problem in HPC module.

The rules for the other modules can be similarly interpreted. A
noticeable drop in N1 speed relative to a baseline can be attributed
to a weak LPT. Similarly, a significant drop in N2 speed can be
attributed to a weak HPT and/or opened TNGV area. Two other
unique parameters are EGT and fuel flow. These two parameters
behave proportionally to each other in an approximate ratio of
10°C EGT to 1% WF. That is, for every additional 1 % fuel flow
added to the engine, the EGT would rise approximately 10°C
regardless of the gas path problem.

This ratio, however may change significantly if there is either
an air bleed leak or indication error. Another consideration is the
speed of N1 relative to N2, as well as N1 and N2 speeds relative
to the baseline. Under normal condition, if the speed increases on
a module then the airflow would also increase across the LPC.
The LPT drives the fan and LPC together. A weak LPT slows the
N1 speed. However since a loss of fan flow capacity would result
in an increase in N1 speed, it is essential to assess the condition of
the fan before attempting to assess the condition of the LPT.
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Fig. 2. ECM trend plot report showing change in N2 (+1.2% ) and
EGT (+ 9°C) are increasing as N1 (- 0.6 %) fall.
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Fig. 3. ECM trend plot report showing change in EGT drop (-15°C)

and N1( + 2 %) and fuel flow (+2 %) increases.
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Fig. 4. ECM trend plot report showing change in N2 (- 1.5 %) drop.
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Fig. 6. Shows the membership functions for each of the seven fuzzy
sets for AEGT,AWF,AN1,AN2.

For any given input set of measurement deltas, the fuzzy rules
are applied using product implication. Once the fuzzy rules are
applied for a given measurement, we have degree of memberships
for FAN, LPC, HPC, HPT, and LPT. The fault with the highest
degree of membership is selected as the most likely fault. The
fault with the second highest degree of membership is selected as
the second most likely fault.

Fig. 6. shows the membership functions for each of the seven
fuzzy sets for AEGT,AWF,AN1,AN2. There is more overlap
between the fuzzy sets partitioning EGT and WF because these
measurements have greater uncertainty, compared to N1 and N2.

III. Simulations

The fuzzy inference logic system is tested using simulated data
developed from PW4000-94” Engine ECM trend plot reports.
Noise is added to the simulated measurement deltas using the
typical standard deviations for AEGT,AWF,AN1,AN2 as
2.5°C, 0.5%, 0.25%, and 0.3%, respectively. To observe how the
fuzzy inference logic system performs with data at other standard
deviations, we define the baseline standard deviation as o,=
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Table 3. Fault isolation results from fuzzy inference logic system.

Module/Isolation No.1 choice % No.2 choice %
FAN 100 100
LPC 95 100
HPC 93 100
HPT 100 100
LPT 100 100
97.6 100

(2.5°C, 0.5 %, 0.25 %, 0.3 %) and test the fuzzy inference logic
system with data at standard deviation values which are multiples
of o,. The success rate for these tests is shown as the scatter in

thedata o/, is increased from 0 to 2 as shown in the Fig. 7. It

is clear that the fuzzy inference logic system shows a slow
deterioration in performance as the scatter in the data increase.
The problem in fault isolation are mostly in the confounding
between the LPC and HPC modules, and the other module faults
are isolated well even with data with scatter as high as 2 o,.

Table 3. shows the results from the fuzzy inference logic
system. For the FAN, LPT, and HPT modules, there is a 100%
success rate with the first choice of the fuzzy inference logic
system. Forthe LPC and HPC, there is some confounding and a
slightly lower accuracy of 95% and 93%, respectively. The
average success rate for the fuzzy logic system is 97 % when only
the first choice is considered.

Whenever the LPC module is not identified correctly as the first
choice, the fuzzy system confuses it with the HPC module.
Whenever the HPC module is not correctly identified as the first
choice, the fuzzy system confuses it with the LPC module.
However, ifthe first two choices are taken, the accuracy of the
fuzzy system is 100%. The confusion between these compressor
modulesis because of the similarity in the directions of the ECM
trend plot reports, which can be seen in the ECM trend plot
reports aswell as the fuzzy rules. In the cases where the random
error is high, the ECM trend plot reports for the HPC look very
similar to those of the LPC, and vice versa.

It is clear that the fuzzy inference logic system is able to
identify the correct fault despite the presence of considerable
uncertainty in the measurements. In cases where it is confounded,
a human expert would also be likely to be confounded.

IV. Conclusion

A fuzzy inference logic system is developed for gas turbine
engine fault isolation. It takes measurement deviations from a
baseline engine and isolates the faulty module. The fuzzy logic
system operates with four basic measurements (EGT, WF, NI,
N2) and analyzes deterioration in five modules (FAN, LPC, HPC,
HPT, LPT). The fuzzy inference logic system is based on ECM
trend plot reports provided by engine manufacturers and used by
airline engineers.

Results show that the fuzzy inference logic system has a
success rate of almost 100% in isolating the faulty engine module
with four measurements. In cases where the fuzzy logic system is
confounded, it was due to large uncertainty in the data and an
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airline engineer may have been similarly confounded. The fuzzy
inference logic system therefore can be used as an expert system
for automating the process of interpreting gas turbine performance
data such as ECM trend plot reports or test cell MAP (Module
Analysis Program) net charts. The fuzzy inference logic system is
sufficiently robust and performs well for fault sizes that
considerably different from the implanted faults used to develop
the fuzzy rule base.
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