• Title/Summary/Keyword: isolation device

Search Result 299, Processing Time 0.028 seconds

Seismic Stability and Fatigue Performance Test of Lead Rubber Bearings (납-적층고무받침의 지진안정성 및 피로거동 실험)

  • Cho, Chang-Beck;Kwahk, Im-Jong;Kim, Young-Jin;Kwark, Jong-Won;Cho, Hae-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.537-544
    • /
    • 2006
  • In this study, performance level evaluation tests have been actually performed on laminated rubber seismic isolation bearings (LRB) made in Korea. To provide basic data for setting up fabrication criteria and performance evaluation criteria three real scale LRB were tested and the test results were analysised. Accordingly, a large capacity test device has been designed and manufactured to implement the tests. The device selected for evaluation is a circular LRB actually applied in bridges. Evaluation tests were conducted using full-scale LRB with diameter of 851mm in the rubber part and total height of 215mm of which the effective horizontal stiffness and equivalent damping ratio have been measured during the experiments.

  • PDF

Integer and fractional quantum Hall effect in graphene heterostructure

  • Youngwook Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • The study of two-dimensional electron systems with extraordinarily low levels of disorder was, for a long time, the exclusive privilege of the epitaxial thin film research community. However, the successful isolation of graphene by mechanical exfoliation has truly disrupted this field. Furthermore, the assembly of heterostructures consisting of several layers of different 2D materials in arbitrary order by exploiting van der Waals forces has been a game-changer in the field of low-dimensional physics. This technique can be generalized to the large class of strictly 2D materials and offers unprecedented parameters to play with in order to tune electronic and other properties. It has led to a paradigm shift in the field of 2D condensed matter physics with bright prospects. In this review article, we discuss three device fabrication techniques towards high mobility devices: suspended structures, dry transfer, and pick-up transfer methods. We also address state-of-the-art device structures, which are fabricated by the van der Waals pick-up transfer method. Finally, we briefly introduce correlated ground states in the fractional quantum Hall regime.

Characteristics of 3-Dimensional Integration Circuit Device (3차원 집적 회로 소자 특성)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • As a demand for the portable device requiring smaller size and better performance is in hike, reducing the size of conventionally used planar 2 dimensional integration circuit(IC) cannot be a solution for the enhancement of the semiconductor integration circuit technology due to an increase in RC delay among interconnects. To address this problem, a new technology of 3 dimensional integration circuit (3D-IC) has been developing. In this study, three-dimensional integrated device was investigated due to improve of reducing the size, interconnection problem, high system performance and functionality.

Experimental Study of Vibration and Noise Reduction Effect of Railroad Vibration Isolator (철도레일 방진 체결장치의 진동 및 소음 저감 효과에 관한 실험적 연구)

  • Lee, Jang-Hyun;Kim, Tae-Eon;Lee, Seong-Choon;Chon, Ik-Pom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1373-1378
    • /
    • 2000
  • Vibration caused by railroad vehicle including subway train running raises a lot of problems to the neighboring buildings. Therefore lots of methods to isolate the railway vibration have been studied and practically applied to sites. As one of them, specially designed vibration isolation device was installed in the some section of Seoul subway. This device is installed between the rail and track slab. Because the process of installation is relatively simple, this method can be applied to the existing railways in servicing. We measured the vibration and noise to check the effectiveness of this device before and after the installation. The result showed that the vibration level of the slab and platform was reduced to 7 - 10 dB. Expecially high frequency component was reduced to a large amount. From this result, we can conclude that these kind of devices are useful to the reduction of the railroad vibration, expecially the high frequency vibration which can cause structure born noise.

  • PDF

Basic Issues in SOI Technology : Device Properties and Processes and Wafer Fabrication (SOI 기술의 이해와 고찰: 소자 특성 및 공정, 웨이퍼 제조)

  • Choe, Kwang-Su
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.613-619
    • /
    • 2005
  • The ever increasing popularity and acceptance in the market place of portable systems, such as cell phones, PDA, notebook PC, etc., are fueling effects in further miniaturizing and lowering power consumption in these systems. The dynamic power consumption due to the CPU activities and the static power consumption due to leakage currents are two major sources of power consumption. Smaller devices and a lower de voltage lead to reducing the power requirement, while better insulation and isolation of devices lead to reducing leakage currents. All these can be harnessed in the SOI (silicon-on-insulator) technology. In this study, the key aspects of the SOI technology, mainly device electrical properties and device processing steps, are briefly reviewed. The interesting materials issues, such as SOI structure formation and SOI wafer fabrication methods, are then surveyed. In particular, the recent technological innovations in two major SOI wafer fabrication methods, namely wafer bonding and SIMOX, are explored and compared in depth. The results of the study are nixed in that, although the quality of the SOI structures has shown great improvements, the processing steps are still found to be too complex. Between the two methods, no clear winner has yet emerged in terms of the product quality and cost considerations.

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu;Renkang Hu;Menggang Yang;Dongliang Meng
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.333-343
    • /
    • 2023
  • Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

A Study on sub 0.1$\mu\textrm{m}$ ULSI Device Quality Using Novel Titanium Silicide Formation Process & STI (새로운 티타늅 실리사이드 형성공정과 STI를 이용한 서브 0,1$\mu\textrm{m}$ ULSI급 소자의 특성연구)

  • Eom, Geum-Yong;O, Hwan-Sul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.1-7
    • /
    • 2002
  • Deep sub-micron bulk CMOS circuits require gate electrode materials such as metal silicide and titanium silicide for gate oxides. Many authors have conducted research to improve the quality of the sub-micron gate oxide. However, few have reported on the electrical quality and reliability of an ultra-thin gate. In this paper, we will recommend a novel shallow trench isolation structure and a two-step TiS $i_2$ formation process to improve the corner metal oxide semiconductor field-effect transistor (MOSFET) for sub-0.1${\mu}{\textrm}{m}$ VLSI devices. Differently from using normal LOCOS technology, deep sub-micron CMOS devices using the novel shallow trench isolation (STI) technology have unique "inverse narrow-channel effects" when the channel width of the device is scaled down. The titanium silicide process has problems because fluorine contamination caused by the gate sidewall etching inhibits the silicide reaction and accelerates agglomeration. To resolve these Problems, we developed a novel two-step deposited silicide process. The key point of this process is the deposition and subsequent removal of titanium before the titanium silicide process. It was found by using focused ion beam transmission electron microscopy that the STI structure improved the narrow channel effect and reduced the junction leakage current and threshold voltage at the edge of the channel. In terms of transistor characteristics, we also obtained a low gate voltage variation and a low trap density, saturation current, some more to be large transconductance at the channel for sub-0.1${\mu}{\textrm}{m}$ VLSI devices.

Simulations Analysis of Proposed Structure Characteristics in Shallow Trench Isolation for VLSI (고집적을 위한 얕은 트랜치 격리에서 제안한 구조의 특성 모의 분석)

  • Lee, YongJae
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • In this paper, We are going to propose the novel structure with improved behavior than the conventional vertical structure for VLSI CMOS circuits. For this, the proposed structure is the moat shape for STI. We want to analysis the characteristics of simulations about the electron concentration distribution, oxide layer shape of hot electron stress, potential flux and electric field flux, electric field fo themal damage and current-voltage characteristics in devices. Physically based models are the ambient and stress bias conditions of TCAD tool. As a analysis results, shallow trench structure were trended to be electric functions of passive as device dimensions shrink. The electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage, are decreased the stress effects of active region. The fabricated device of based on analysis results data were the almost same characteristics of simulation results data.

Oxidation Process of GaN Schottky Diode for High-Voltage Applications (고전압 응용분야를 위한 GaN 쇼트키 다이오드의 산화 공정)

  • Ha, Min-Woo;Han, Min-Koo;Hahn, Cheol-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2265-2269
    • /
    • 2011
  • 1 kV high-voltage GaN Schottky diode is realized using GaN-on-Si template by oxidizing Ni-Schottky contact. The Auger electron spectroscopy (AES) analysis revealed the formation of $NiO_x$ at the top of Schottky contact. The Schottky contact was changed to from Ni/Au to Ni/Ni-Au alloy/Au/$NiO_x$ by oxidation. Ni diffusion into AlGaN improves the Schottky interface and the trap-assisted tunneling current. In addition, the reverse leakage current and the isolation-leakage current are efficiently suppressed by oxidation. The isolation-leakage current was reduced about 3 orders of magnitudes. The reverse leakage current was also decreased from 2.44 A/$cm^2$ to 8.90 mA/$cm^2$ under -100 V-biased condition. The formed group-III oxides ($AlO_x$ and $GaO_x$) during the oxidation is thought to suppress the surface leakage current by passivating surface dangling bonds, N-vacancies and process damages.