• Title/Summary/Keyword: irradiation distance

Search Result 170, Processing Time 0.021 seconds

Basic Measurements and Dosage Compensation for Total Body Irradiation (전신조사를 위한 선량 측정과 보상)

  • 김진기;권형철;김정수;김부길;추성실
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.25-34
    • /
    • 1992
  • For the TBI with medical linear accelerator(6.10MV), we measured basic data for dosage calculation and designed compensation filters to improve dose uniformity. At the distance of 3.4cm from the source, using the specially designed compensation filters reduced with in ${\pm}$5% for mid-depth dose in the phantom seated with flexion of the legs in the field sige up to 120${\times}$120cm$^2$ for the whole body. In repeated measurements for the dose distribution with humanoid phantom contained paraflin compound, measurement error using the TLD chips were less than ${\pm}$5%.

  • PDF

The Improvement of Thermal Stability and Tensile Toughness by the Photocrosslinking of Poly(phenylene sulfide) containing Acetophenone (아세토페논을 함유한 Poly(phenylene sulfide)의 광가교에 의한 내열성과 인장인성 강화)

  • Jang, Yong-Joon;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.281-287
    • /
    • 2012
  • Poly(phenylene sulfide) films containing acetophenone as a photoinitiator were photocrosslinked under UV irradiation using a continuous UV irradiator. The gel fraction of the irradiated PPS in 1-Chloro naphthalene reached 94.7% with increasing UV energy and the photoinitiator concentration in the film upto $200J/cm^2$ and 12wt% respectively. Solid state $^1C$ NMR analysis suggested that the crosslinking occurred between the phenylene chains in PPS, indicating that the acetophenone may the phenylene hydrogens and subsequently adjacent polymer radicals could be recombined to form the crosslinked structure. The crosslinking improved the thermal behavior of PPS such as loss of $T_g$ and $T_c$, higher melting point and lower melting enthalphy as well as significantly higher peak pyrolysis temperature as much as $63.5^{\circ}C$. Surprisingly the tensile toughness of the most crosslinked PPS increased by 842%, resulting from the substantial enhancements in tensile modulus, strength and strain as much as 76%, 236% and 240% respectively. Also dynamic mechanical measurement indicated that the distance between crosslinks in the crosslinked PPS reached 85.3 g/mol corresponing to a crosslink density of 0.012 mol/g.

소형 펀치 시험에 의한 강용접부의 파괴강도 평가에 관한 연구 1

  • 유대영;정세희;임재규
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.28-35
    • /
    • 1989
  • It was reported that the toughness for welded region was influenced by various factors such as the gradient for prior austenite grain size, the variation of microhardness and the characteristic microstructure depending on distance from the fusion boundary. Therefore, in order to evaluate the fracture strength of the weldment in which the microstructures change continuously, it is important to assess the peculiar strength of each microstructure in welded region. It was known that the small punch(SP) test technique which was originally developed to study the irradiation damage effect for the structures of nuclear power plant was also useful to investigate the strength evaluating of nonhomogeneous materials. In this paper, by means of a small punch test technique the possibility of evaluating strength of parent and welded region in SS41 and SM53B steels was investigated. The obtained results are summerized as follows: 1) The small punch test which showed markedly the ductile-brittle transition behavior in this experiment may be applied to evaluation for the fracture strength of welded region. 2) It was shown that the ductile-brittle regime lied in Region III(plastic membrane stretching region) of the flow characteristics observed in SP test. 3) The SP test technique which shows a more precipitous energy change transition behavior than the other test technique is able to estimate the more precise transition temperature. 4) It could be seen that in comparision with the structure of parent the structure of weld HAZ in SS41 steel was improved while it in SM53B steel was deteriorated.

  • PDF

A Study on Laser Welding for 3D Printed Metal Plate and Polymer (금속 3D 프린팅 소재와 폴리머 레이저접합에 관한 연구)

  • Ye, Kang-Hyun;Kim, Sung-Wook;Park, Geo-Dong;Choi, Hae-Woon
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.23-27
    • /
    • 2016
  • A 3D printed metal part and thermal plastic polymer part were joined by direct laser irradiation. The 3D metal part was fabricated by using DED(Direct Energy Deposition) with STS316 material. The experiment was carried out through no patterned metal surface, 3D metal printed surface and micro laser patterned surface. The most secure joining quality was obtained at the laser micro patterned surface specimen and the counterparts of polymers were PLA and PE based thermo plastics. The applied laser power was 350Watt and the distance of patterns was maintained at $150{\mu}m$. The laser line width was optimized at $450{\mu}m$ and the laser micro pattern depth was $180{\mu}m$ for the best joining quality. Based on the result analysis, the possibility of laser material joining for metal to polymer was proposed and multi-material joining will be possible in 3D laser direct material fabrication.

Synthesis and Structure of 1,2,3,4,5-Pentamethylcyclopentadienyl-1,4-Diphenyltetraazabutadiene Complexes of Rhodium and Iridium

  • Paek ,Cheolki;Ko, Jaejung;Kang, Sangook;Patrick J.Carrol
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.432-436
    • /
    • 1994
  • Monomeric rhodium and iridium-diaryltetrazene complexes $Cp^*$M(RNN=NNR)($Cp^*$=1,2,3,4,5-pentamethylcyclope ntadienyl; M=Rh, Ir; R=Ph, 4-tolyl) have been synthesized from [$Cp^*MCl_2]_2$(M=Rh, Ir) and 2 equiv. of $[Li(THF)_x]_2(RN_4$R) in benzene. We have determined the crystal structure of (${\eta}^5$-pentamethylcyclopentadienyl)diphenyltetrazene iridium by using graphite-monochromated Mo-$K_a$ radiation. The compound was crystallized in the monoclinic space group $P2_{1/c}$ with a=13.781(3), b=9.035(l), c=17.699(3) ${\AA}$, and ${\beta}=111.93(l)^{\circ}$. An X-ray crystal structure of complex 1 showed a short N(2)-N(3) distance ($1.265 {\AA}$) consistent with the valence tautomer A with Ir(III) rather than Ir(I). All complexes are highly colored and decompose on irradiation at 254 nm. Electrochemical studies show that complex 1 displays a quasi-reversible reduction.

Considerations of the Optimized Protective Action Distance to Meet the Korean Protective Action Guides Following Maximum Hypothesis Accidents of Major KAERI Nuclear Facilities

  • Goanyup Lee;Hyun Ki Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.52-57
    • /
    • 2023
  • Background: Korea Atomic Energy Research Institute (KAERI) operates several nuclear research facilities licensed by Nuclear Safety and Security Commission (NSSC). The emergency preparedness requirements, GSR Part 7, by International Atomic Energy Agency (IAEA) request protection strategy based on the hazard assessment that is not applied in Korea. Materials and Methods: In developing the protection strategy, it is important to consider an accident scenario and its consequence. KAERI has tried the hazard assessment based on a hypothesis accident scenario for the major nuclear facilities. During the assessment, the safety analysis report of the related facilities was reviewed, the simulation using MELCOR, MACCS2 code was implemented based on a considered accident scenario of each facility, and the international guidance was considered. Results and Discussion: The results of the optimized protective actions were 300 m evacuation and 800 m sheltering for the High-Flux Advanced Neutron Application Reactor (HANARO), the evacuation to radius 50 m, the sheltering 400 m for post-irradiation examination facility (PIEF), 100 m evacuation or sheltering for HANARO fuel fabrication plant (HFFP) facility. Conclusion: The results of the optimized protective actions and its distances for the KAERI facilities for the maximum postulated accidents were considered in establishing the emergency plan and procedures and implementing an emergency exercise for the KAERI facilities.

The Irradiated Lung Volume in Tangential Fields for the Treatment of a Breast (유방암의 접선 조사시 피폭 폐용적)

  • Oh Young Taek;Kim Juree;Kang Haejin;Sohn Jeong Hye;Kang Seung Hee;Chun Mison
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 1997
  • Purpose : Radiation pneumonitis is one of the complications caused by radiation therapy that includes a Portion of the lung tissue. The severity of radiation induced pulmonary dysfunction depends on the irradiated lung volume, total dose, dose rate and underlying Pulmonary function. It also depends on whether chemotherapy is done or not. The irradiated lung volume is the most important factor to predict the pulmonary dysfunction in breast cancer Patients following radiation therapy. There are some data that show the irradiated lung volume measured from CT scans as a part of treatment Planning with the tangential beams. But such data have not been reported in Korea. We planned to evaluate the irradiated lung volume quantitatively using CT scans for the breast tangential field and search for useful factors that could Predict the irradiated lung volume Materials and Methods : The lung volume was measured for 25 patients with breast cancer irradiated with tangential field from Jan.1995 to Aug.1996. Parameters that can predict the irradiated lung volume included; (1) the peruendicular distance from the Posterior tangential edge to the posterior part of the anterior chest wall at the center of the field (CLD) ; (2) the maximum perpendicular distance from the posterior tangential field edge to the posterior Part of the anterior chest wall (MLD) ; (3) the greatest perpendicular distance from the Posterior tangential edge to the posterior part of anterior chest wall on CT image at the center of the longitudinal field (GPD) ; (4) the length of the longitudinal field (L). The irradiated lung volume(RV), the entire both lung volume(EV) and the ipsilateral lung volume(IV) were measured using dose volume histogram. The relationship between the irradiated lung volume and predictors was evaluated by regression analysis. Results :The RV is 61-279cc (mean 170cc), the RV/EV is $2.9-13.0\%\;(mean\;5.8\%)$ and the RV/IV is $4.9-29.0\%\;(mean\;12.2\%)$. The CLD, the MLD and the GPD ave 1.9-3.3cm, 1.9-3.3cm and 1.4-3.1cm respectively. The significant relations between the irradiated lung volume such as RV. RV/EV, RV/IV and parameters such as CLD, MLD, GPO, L. $CLD\timesL,\;MLD\timesL\;and\;GPD\timesL$ are not found with little variances in parameters. The RV/IV of the left breast irradiation is significantly larger than that of the right but the RV/EVS do not show the differences. There is no symptomatic radiation pneumonitis at least during 6 months follow up. Conclusion : The significant relationship between the irradiated lung volume and predictors is not found with little variation on parameters. The irradiated lung volume in the tangential held is liss than $10\%$ of entire lung volume when CLO is less than 3cm. The RV/IV of the left tangential field is larger than that of the right but there was no significant differences in RV/EVS. Symptomatic radiation pneumonitis has not occurred during minimum 6 months follow up.

  • PDF

Dose Distribution of Co-60 Photon Beam in Total Body Irradiation (Co-60에 의한 전신조사시 선량분포)

  • Kang, Wee-Saing
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.109-120
    • /
    • 1991
  • Total body irradiation is operated to irradicate malignant cells of bone marrow of patients to be treated with bone marrow transplantation. Field size of a linear accelerator or cobalt teletherapy unit with normal geometry for routine technique is too small to cover whole body of a patient. So, any special method to cover patient whole body must be developed. Because such environments as room conditions and machine design are not universal, some characteristic method of TBI for each hospital could be developed. At Seoul National University Hospital, at present, only a cobalt unit is available for TBI because source head of the unit could be tilted. When the head is tilted outward by 90$^{\circ}$, beam direction is horizontal and perpendicular to opposite wall. Then, the distance from cobalt source to the wall was 319 cm. Provided that the distance from the wall to midsagittal plane of a patient is 40cm, nominal field size at the plane(SCD 279cm) is 122cm$\times$122cm but field size by measurement of exposure profile was 130cm$\times$129cm and vertical profile was not symmetric. That field size is large enough to cover total body of a patient when he rests on a couch in a squatting posture. Assuming that average lateral width of patients is 30cm, percent depth dose for SSD 264cm and nominal field size 115.5cm$\times$115.5cm was measured with a plane-parallel chamber in a polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom of size 25cm wide and 30cm deep. Depth of dose maximum, surface dose and depth of 50% dose were 0.3cm, 82% and 16.9cm, respectively. A dose profile on beam axis for two opposing beams was uniform within 10% for mid-depth dose. Tissue phantom ratio with reference depth 15cm for maximum field size at SCD 279cm was measured in a small polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom with TLD chips inserted in holes on the largest coronal plane was bilaterally irradiated by 15 minute in each direction by cobalt beam aixs in line with the cross line of the coronal plane and contact surface of sections No. 27 and 28. When doses were normalized with dose at mid-depth on beam axis, doses in head/neck, abdomen and lower lung region were close to reference dose within $\pm$ 10% but doses in upper lung, shoulder and pelvis region were lower than 10% from reference dose. Particulaly, doses in shoulder region were lower than 30%. On this result, the conclusion such that under a geometric condition for TBI with cobalt beam as SNUH radiotherapy departement, compensators for head/neck and lung shielding are not required but boost irradiation to shoulder is required could be induced.

  • PDF

A Dosimetric Evaluation of Large Pendulous Breast Irradiation in Prone Position (Large Pendulous Breast 환자의 방사선 치료에 있어서 엎드린 자세의 유용성 평가)

  • Hong, Chae-Seon;Ju, Sang-Gyu;Park, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2008
  • Purpose: To evaluate dosimetry results of three different techniques for whole breast irradiation after conservative surgery of large pendulous breast patient. Materials and Methods: Planning computed tomography (CT) scans for three techniques were performed on a GE Hi-speed advantage CT scanner in the supine (SP), supine with breast supporting Device (SD) and prone position on a custom prone mattress (PP). Computed tomography images were acquired at 5 mm thickness. The clinical target volumes (CTV), ipsilateral lung and heart were delineated to evaluate the dose statistic, and all techniques were planned with the tangential photon beams (Pinnacle$^3$, Philips Medical System, USA). The prescribed dose was 50 Gy delivered in 25 fractions. To evaluate the dose coverage for CTV, we analysed percent volume of CTV receiving minimum of 95%, 100%, 105%, and 110% of prescription dose ($V_{95}$, $V_{100}$, $V_{105}$, and $V_{110}$) and minimal dose covering 95% ($D_{95}$) of CTV. The dosimetric comparison for heart and ipsilateral lung was analysed using the minimal dose covering 5% of each organs ($D_5$) and the volume that received >18 Gy for the heart and >20 Gy for the ipsilateral lung. Results: Target volume coverage ($V_{95}$ and $V_{100}$) was not significantly different for all technique. The V105 was lower for PP (1.2% vs. 4.4% for SP, 11.1% for SD). Minimal dose covering 95% ($D_{95}$) of target was 47.5 Gy, 47.7 Gy and 48 Gy for SP, SD and PP. The volume of ipsilateral lung received >20 Gy was 21.7%, 11.6% and 4.9% for SP, SD and PP. The volume of heart received >18 Gy was 17.0%, 16.1% and 9.8% for SP, SD and PP. Conclusion: Prone positioning of patient for large pendulous breast irradiation enables improving dose uniformity with minimal heart and lung doses.

  • PDF

Evaluation of Skin Dose of Intensity Modulated Radiation Therapy in Breast Cancer Patients (유방암환자의 세기조절방사선치료에서 피부선량 평가)

  • Kim, Sung-Kyu;Kim, Myung-Se;Yun, Sang-Mo
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.167-171
    • /
    • 2007
  • In the case of radiotherapy following breast conservation therapy for breast cancer patients, the characteristic of skin dose was investigated in the treatment of intensity modulated radiation therapy (IMRT) for breast cancer patients by comparing and analysing entrance skin dose irradiated during radiotherapy using tangential technique radiotherpy, and IMRT. The calculation dose irradiated to breast skin was compared with TLD measurement dose in treatment planning by performing the two methods of radiotherapy using tangential technique, and IMRT in treatment planning equipment. The skin absorbed dose was measured to pass a nipple by spacing of 1 cm distance from center to edge of body. In the radiotherapy of tangential technique, for the irradiation of 180 cGy to PTV, the calculation dose was ranged from 103.5 cGy to 155.2 cGy, measurement dose was ranged from 107.5 cGy to 156.2 cGy, and skin dose in the center was maximum 1.45 times more irradiated than that in the edge. In the IMRT, for the irradiation of 180 cGy to PTV, the calculation dose was ranged 9.8 cGy at 80.2 cGy, measurement dose was ranged 8.9 cGy at 77.2 cGy, and skin dose in the center was maximum 0.23 times less irradiated than that in the edge. IMRT was more effective for skin radiation risks because radiation dose irradiated to skin in IMRT was much less than that in radiotherapy of tangential field technique.

  • PDF