• Title/Summary/Keyword: iron binding peptide

Search Result 14, Processing Time 0.025 seconds

Preparation for Calcium and Iron-binding Peptides from Rice Bran Protein Hydrolysates (미강 단백질 가수분해물로부터 Ca, Fe 결합된 peptide 제조)

  • Jeon, So-Jeong;Lee, Ji-Hye;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.174-178
    • /
    • 2010
  • Calcium and iron binding peptides were prepared by enzymatic hydrolysis and ultrafiltration of rice bran protein (RBP), which was isolated from defatted rice bran by phytase and xylanase treatment and ultrasonication. The isolated RBP had a molecular weight in the range of 10-66 kDa. The extracted proteins were hydrolyzed using Flavourzyme for 6 hr. After ultrafiltration under 5 kDa as molecular weight, the peptides were fractionated into 4 peaks by Sephadex G-15 gel permeation chromatography, and each fraction was determined for calcium and iron binding activity. As the result, Fl and F2 fractions were the best candidate for calcium and iron chelation, respectively. These results suggest that the calcium and iron binding peptides can be used as functional food additives in food industry.

Isolation of Iron-Binding Peptides from Sunflower (Helianthus annuus L.) Seed Protein Hydrolysates (해바라기씨박 단백질 가수분해물로부터 철분 결합 펩타이드의 분리)

  • Choi, Dong Won;Kim, Nam Ho;Son, Kyung Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1162-1166
    • /
    • 2013
  • Proteins from sunflower seeds were hydrolyzed with Alcalase and Flavourzyme to isolate iron-binding peptides. The optimal hydrolysis conditions were determined. Hydrolysates were filtered under a 3 kDa membrane and iron-binding peptides separated from the hydrolysates using ion exchange and gel permeation chromatographic methods. A fraction with the highest iron-binding activity (Fe/peptide, 0.69), F22, was obtained. These results suggest that fractions isolated from sunflower seed protein hydrolysates can be applied toward the production of iron supplements.

A Study on Iron Binding Peptides from Casein Hydrolysates (Casein 가수분해물 소재 철분결합 Peptide에 관한 연구)

  • Choi, In-Wook;Kim, Ki-Sung;Lim, Sang-Dong;Kim, Hee-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.1052-1056
    • /
    • 1997
  • When casein was hydrolyzed by trypsin, alcalase, neutrase, protamax, and S. aureus type V8, peptides $(100\;{\mu}g/mL)$ which were produced by trypsin and alcalase solubilized $6.42\;and\;2.37\;{\mu}g/mL)$ of added irons at pH 6, respectively, while peptides which were produced by other proteases solubilized less than $1\;{\mu}g/mL$. Peptides produced by trypsin and alcalase were fractionated to 10 fractions on a reverse phase column and each fraction was tested for its iron solubilizing ability at pH 6. Among peptides produced by trypsin, fraction 5 showed the highest iron solubilizing ability $(2.33\;{\mu}g/mL)$. In the case of alcalase, fraction 7 showed the highest iron solubilizing ability $(1.56\;{\mu}g/mL)$. To isolate iron binding peptides from peptides produced by trypsin and alcalase, immobilized iron affinity chromatography which irons were chelated to imino diacetic acids in chelating sepharose fast flow were utilized. Our results showed that immobilized iron affinity chromatography was an effective method to isolate iron binding peptides produced by either trypsin or alcalase from milk casein.

  • PDF

Preparation of chicken feather protein hydrolysates and isolation of iron-binding peptides (닭털 단백질로부터 가수분해물 제조 및 철분 결합 펩타이드의 분리)

  • Kim, Nam Ho;Choi, Dong Won;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.435-439
    • /
    • 2013
  • As byproducts of chicken slaughtering, chicken feathers are produced and mostly discarded without proper treatment, which results in serious environment pollution. Therefore, the appropriate treatment and utilization of chicken feathers are needed. In particular, chicken feathers can be used as protein sources for the preparation of protein hydrolysates, considering that chicken feathers have a large amount of proteins. In this study, chicken feather protein hydrolysates were prepared and their iron-binding peptides were isolated. Chicken feather protein was extracted from feathers of slaughtered chicken, and its hydrolysates were prepared via hydrolysis with Flavourzyme for 8 h. Then the chicken feather protein hydrolysates were ultra-filtered to obtain small peptide fractions and fractionated using Q-Sepharose and Sephadex G-15 columns to isolate their iron-binding peptides. Two major fractions were produced from each of the Q-Sepharose ion exchange chromatography and the Sephadex G-15 gel filtration chromatography. Among the fractions, the peptide fraction with a high iron-binding activity level, F12, was isolated. These results suggest that chicken feather protein hydrolysates can be used as iron supplements.

Iron Binding Peptides from Casein Hydrolysates Produced by Alcalase (Casein으로부터 Alcalase에 의해 생성된 철분결합 Peptide)

  • Choi, In-Wook;Kim, Kee-Sung;Lim, Sang-Dong;Lim, Sin-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.218-223
    • /
    • 1998
  • Casein was hydrolyzed by alcalase to produce iron binding peptide (IBP). IBP was effectively separated from casein hydrolysates by immobilized $Fe^{3+}$ affinity chromatography and further purified by reverse phase chromatography. $25,\;50\;and\;100\;{\mu}g/mL$ of IBP solubilized $4.2,\;5.7\;and\;7.1\;{\mu}g$ of ferric at duodenum condition $(pH\;6,\;37^{\circ}C)$, respectively. According to the result of MALDI analysis, molecular weight of IBP was determined to 2,175 dalton. IBP was mainly composed of proline (24.5 mol%), lysine (15.7 mol%), and glutamine or glutamic acid (14.9 mol%) and its N-terminal sequence was Met-Ala-Pro-Lys-His. According to the information obtained from molecular weight, amino acids composition and N-terminal sequence of IBP, it was evident that IBP was from f102-119 of ${\beta}-casein$.

  • PDF

Manufacturing of Iron Binding Peptide Using Sericin Hydrolysate and Its Bioavailability in Iron Deficient Rat (실크 세리신 단백질을 이용한 유기 철분제의 제조 및 철분 결핍쥐에서의 생물학적 유용성)

  • Cho, Hye-Jin;Lee, Hyun-Sun;Jung, Eun-Young;Park, So-Yeon;Lim, Woo-Taek;Lee, Jeong-Yong;Yeon, Seong-Ho;Lee, Jin-Chae;Suh, Hyung-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1446-1451
    • /
    • 2010
  • Silk sericin protein was hydrolyzed by seven proteolytic enzymes to examine the effectiveness of the hydrolysates to bind iron. The amino acid nitrogen contents of hydrolysates by Flavourzyme were higher than the others enzymes, and its iron binding capacity showed dose-dependent increase. The bioavailability of iron binding peptide from sericin hydolysates was investigated in iron-deficient rats. Three-week-old male rats were fed iron-deficient diet for three weeks. Rats were divided into four groups (DD: no treated group on iron deficient diet, DD+HI: heme-iron treated group, DD+OI: sericin-Fe, and DD+II: inorganic iron ($FeSO_4$) treated group, and then iron supplemented by injection for one week. After oral administration for one week, the iron contents of serum and liver were significantly higher in DD+OI ($4.2\;{\mu}g/mL$ and $80.1\;{\mu}g/mL$) and DD+HI ($3.2\;{\mu}g/mL$ and $70.6\;{\mu}g/mL$) than DD ($2.0\;{\mu}g/mL$ and $47.9\;{\mu}g/mL$). Hemoglobin content of treated groups was significantly higher than DD, but the significant difference among groups was not shown. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not show any significant difference among all groups. Binding iron to peptide from sericin hydolysates seems to improve its bioavailability and to hasten the cure of iron deficiency in experimental rat.

Isolation of Iron and Calcium-Binding Peptides from Cottonseed Meal Protein Hydrolysates (면실박 단백질로부터 가수분해물 제조 및 철분, 칼슘 결합 펩타이드의 분리)

  • Choi, Dong-Won;Kim, Nam-Ho;Song, Kyung Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.263-266
    • /
    • 2012
  • Isolation of iron and calcium-binding peptides derived from cottonseed meal protein (CMP) hydrolysates was investigated. The degree of hydrolysis of CMP by Flavourzyme was monitored using trinitrobenzenesulfonic acid method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzymatic hydrolysis of CMP for 12 h was sufficient for the preparation of CMP hydrolysates, and the hydrolysates were membrane-filtered under 3 kDa as a molecular weight. The filtered solution was fractionated using Q-Sepharose fast flow, Sephadex G-15, and reversed phase-high performance liquid chromatography for iron and calcium-binding peptides. As a result, F51 fraction was obtained as the best candidate for calcium and iron chelation, and the isolated iron and calcium-binding peptides can be used as functional food additives, similar to iron and calcium supplements.

Production of Iron-Binding Peptides from Colostral Whey by Enzymatic Hydrolysis

  • Kim, Sang-Bum;Ku, Min-Jung;Cho, Won-Mo;Ki, Kwang-Seok;Kim, Hyeon-Shup;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.923-929
    • /
    • 2010
  • Colostral whey prepared from colostrum (pooled from first six post-partum milkings) was heated for 10 min at $100^{\circ}C$ Heated colostral whey was incubated with 1% enzymes (protein equivalent basis) for 15, 30, 60, 90, and 120 min at $50^{\circ}C$. Papain, pepsin, trypsin, and alcalase produced different degrees of hydrolysis (DH), 10.66%, 12.42%, 10.83%, and 25.31%, respectively, at an incubation time of 120 min. The SDS-PAGE reveals that significant amounts of bovine serum albumin (BSA), ${\beta}$-lactoglobulin (${\beta}$-LG), and ${\alpha}$-lactalbumin (${\alpha}$-LA) survived papain digestion. In contrast, pepsin completely removed BSA but not ${\beta}$-LG present in heated colostral whey. Alcalase completely eliminated BSA, ${\beta}$-LG, and ${\alpha}$-LA. This differential hydrolysis was confirmed by reversed-phase HPLC analysis. Using ion-exchange chromatography, fraction-1 (F-1) was obtained from alcalase hydrolysate at a NaCl gradient concentration of 0.25 M. Reversed-phase HPLC chromatograms of alcalase F-1 showed numerous small peaks, which probably indicate that a variety of new peptides were produced. Iron content of alcalase F-1 was 28.94 ppm, which was the highest among all enzyme fractions, whereas iron content of colostral whey was 36.56 ppm. Main amino acids contained in alcalase F-1 were Thr (15.45%), Glu (14.12%), and Ser (10.39%). Therefore, alcalase can be used to generate good iron-binding peptides in heated colostral whey, and the resulting iron-binding peptides could be suitable as a value-added food ingredient for food supplements.

Backbone NMR chemical shift assignment for the substrate binding domain of Escherichia coli HscA

  • Jin Hae Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.2
    • /
    • pp.6-9
    • /
    • 2024
  • HscA is a Hsp70-type chaperone protein that plays an essential role to mediate the iron-sulfur (Fe-S) cluster biogenesis mechanism in Escherichia coli. Like other Hsp70 chaperones, HscA is composed of two domains: the nucleotide binding domain (NBD), which can hydrolyze ATP and use its chemical energy to facilitate the Fe-S cluster transfer process, and the substrate binding domain (SBD), which directly interacts with the substrate, IscU, the scaffold protein of an Fe-S cluster. In the present work, we prepared the isolated SBD construct of HscA (HscA(SBD)) and conducted the solution-state nuclear magnetic resonance (NMR) experiments to have its backbone chemical shift assignment information. Due to low spectral quality of HscA(SBD), we obtained all the NMR data from the sample containing the peptide LPPVKIHC, the HscA-interaction motif of IscU, from which the chemical shift assignment could be done successfully. We expect that this information provides an important basis to execute detailed structural characterization of HscA and appreciate its interaction with IscU.

Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity

  • Isarankura-Na-Ayudhya, Chartchalerm;Tansila, Natta;Worachartcheewan, Apilak;Bulow, Leif;Prachayasittikul, Virapong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.532-541
    • /
    • 2010
  • Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in catalytic constant ($k_{cat}$) was obtained in P54R variant,which was presumably attributable to the lower rigidity and higher hydrophilicity of the distal cavity arising from substitution of proline to arginine. None of the modifications altered the affinity towards either $H_2O_2$ or ABTS substrate. Spectroscopic studies revealed that VHb variants harboring the T29H mutation apparently demonstrated a spectral shift in both ferric and ferrous forms (406-408 to 411 nm, and 432 to 424-425 nm, respectively). All VHb proteins in the ferrous state had a $\lambda_{soret}$ peak at ~419 nm following the carbon monoxide (CO) binding. Expression of the P54R mutant mediated the downregulation of iron superoxide dismutase (FeSOD) as identified by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting (PMF). According to the high peroxidase activity of P54R, it could effectively eliminate autoxidation-derived $H_2O_2$, which is a cause of heme degradation and iron release. This decreased the iron availability and consequently reduced the formation of the $Fe^{2+}$-ferric uptake regulator protein ($Fe^{2+}$-Fur), an inducer of FeSOD expression.