Browse > Article
http://dx.doi.org/10.4014/jmb.0908.08038

Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity  

Isarankura-Na-Ayudhya, Chartchalerm (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University)
Tansila, Natta (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University)
Worachartcheewan, Apilak (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University)
Bulow, Leif (Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University)
Prachayasittikul, Virapong (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 532-541 More about this Journal
Abstract
Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in catalytic constant ($k_{cat}$) was obtained in P54R variant,which was presumably attributable to the lower rigidity and higher hydrophilicity of the distal cavity arising from substitution of proline to arginine. None of the modifications altered the affinity towards either $H_2O_2$ or ABTS substrate. Spectroscopic studies revealed that VHb variants harboring the T29H mutation apparently demonstrated a spectral shift in both ferric and ferrous forms (406-408 to 411 nm, and 432 to 424-425 nm, respectively). All VHb proteins in the ferrous state had a $\lambda_{soret}$ peak at ~419 nm following the carbon monoxide (CO) binding. Expression of the P54R mutant mediated the downregulation of iron superoxide dismutase (FeSOD) as identified by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting (PMF). According to the high peroxidase activity of P54R, it could effectively eliminate autoxidation-derived $H_2O_2$, which is a cause of heme degradation and iron release. This decreased the iron availability and consequently reduced the formation of the $Fe^{2+}$-ferric uptake regulator protein ($Fe^{2+}$-Fur), an inducer of FeSOD expression.
Keywords
Vitreoscilla hemoglobin; peroxidase-like activity; enzyme kinetics; catalytic constant; proteomic analysis; iron superoxide dismutase;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kvist, M., E. S. Ryabova, E. Nordlander, and L. Bulow. 2007. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J. Biol. Inorg. Chem. 12: 324-334.   DOI   ScienceOn
2 Yang, G., R. Yuan, and Y. Q. Chai. 2008. A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloids Surf. B Biointerfaces 61: 93-100.   DOI   ScienceOn
3 Adams, P. A. 1990. The peroxidasic activity of the haem octapeptide microperoxidase-8(MP-8): The kinetic mechanism of the catalytic reduction of $H_{2}O_{2}$ by MP-8 using 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) as reducing substrate. J. Chem. Soc. Perkin Trans. 2: 1407-1414.
4 Allocatelli, C. T., F. Cutruzzola, A. Brancaccio, M. Brunori, J. Qin, and G. N. La Mar. 1993. Structural and functional characterization of sperm whale myoglobin mutants: Role of arginine (E10) in ligand stabilization. Biochemistry 32: 6041-6049.   DOI   ScienceOn
5 Bauer, F. and H. Sticht. 2007. A proline to glycine mutation in the Lck SH3-domain affects conformational sampling and increases ligand binding affinity. FEBS Lett. 581: 1555-1560.   DOI   ScienceOn
6 Geckil, H., S. Gencer, H. Kahraman, and S. O. Erenler. 2003. Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: Cell growth, survival, and antioxidant enzyme status under oxidative stress. Res. Microbiol. 154: 425-431.   DOI   ScienceOn
7 Nagababu, E., F. J. Chrest, and J. M. Rifkind. 2003. Hydrogenperoxide-induced heme degradation in red blood cells: The protective roles of catalase and glutathione peroxidase. Biochim. Biophys. Acta 1620: 211-217.   DOI   ScienceOn
8 George, P. 1953. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. I. Titration with reducing agents. Biochem. J. 54: 267-276.
9 Liu, C. Y. and D. A. Webster. 1974. Spectral characteristics and interconversions of the reduced oxidized and oxygenated forms of purified cytochrome o. J. Biol. Chem. 249: 4261-4266.
10 Miessler, G. L. and D. A. Tarr. 2004. Inorganic Chemistry, 3rd Ed. Prentice Hall, Upper Saddle River, New Jersey.
11 Rodriguez-Lopez, J. N., A. T. Smith, and R. N. Thorneley. 1996. Role of arginine 38 in horseradish peroxidase. A critical residue for substrate binding and catalysis. J. Biol. Chem. 271: 4023-4030.   DOI
12 Roos, V., C. I. Andersson, C. Arfvidsson, K. G. Wahlund, and L. Bulow. 2002. Expression of double Vitreoscilla hemoglobin enhances growth and alters ribosome and tRNA levels in Escherichia coli. Biotechnol. Prog. 18: 652-656.   DOI   ScienceOn
13 Wakabayashi, S., H. Matsubara, and D. A. Webster. 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481-483.   DOI   ScienceOn
14 Zhang, K., L. Mao, and R. Cai. 2000. Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta 51: 179-186.   DOI   ScienceOn
15 Nagababu, E. and J. M. Rifkind. 2000. Heme degradation during autoxidation of oxyhemoglobin. Biochem. Biophys. Res. Commun. 273: 839-845.   DOI   ScienceOn
16 Delano, W. L. 1998. The PyMOL Molecular Graphic System. Delano Scientific LLC, San Carlos, CA (http://www.pymol.org).
17 Berglund, G. I., G. H. Carlsson, A. T. Smith, H. Szoke, A. Henriksen, and J. Hajdu. 2002. The catalytic pathway of horseradish peroxidase at high resolution. Nature 417: 463-468.   DOI   ScienceOn
18 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
19 Fan, C., J. Zhong, R. Guan, and G. Li. 2003. Direct electrochemical characterization of Vitreoscilla sp. hemoglobin entrapped in organic films. Biochim. Biophys. Acta 1649: 123-126.   DOI   ScienceOn
20 Zhang, L., Y. Li, Z. Wang, Y. Xia, W. Chen, and K. Tang. 2007. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol. Adv. 25: 123-136.   DOI   ScienceOn
21 Khosla, C. and J. E. Bailey. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633-635.   DOI   ScienceOn
22 Zhang, J. and M. Oyama. 2004. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim. Acta 50: 85-90.   DOI   ScienceOn
23 Matsui, T., S. Ozaki, E. Liong, G. N. Phillips Jr., and Y. Watanabe. 1999. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide. J. Biol. Chem. 274: 2838-2844.   DOI
24 Patapas, J., M. M. Al-Ansari, K. E. Taylor, J. K. Bewtra, and N. Biswas. 2007. Removal of dinitrotoluenes from water via reduction with iron and peroxidase-catalyzed oxidative polymerization: A comparison between Arthromyces ramosus peroxidase and soybean peroxidase. Chemosphere 67: 1485-1491.   DOI   ScienceOn
25 Tarricone, C., A. Galizzi, A. Coda, P. Ascenzi, and M. Bolognesi. 1997. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure 5: 497-507.   DOI   ScienceOn
26 Tsuruga, M., A. Matsuoka, A. Hachimori, Y. Sugawara, and K. Shikama. 1998. The molecular mechanism of autoxidation for human oxyhemoglobin. Tilting of the distal histidine causes nonequivalent oxidation in the beta chain. J. Biol. Chem. 273: 8607-8615.   DOI
27 Bolognesi, M., A. Boffi, M. Coletta, A. Mozzarelli, A. Pesce, C. Tarricone, and P. Ascenzi. 1999. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: A thermodynamic, kinetic and X-ray crystallographic study. J. Mol. Biol. 291: 637-650.   DOI   ScienceOn
28 Khosla, C., J. E. Curtis, J. DeModena, U. Rinas, and J. E. Bailey. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology (NY) 8: 849-853.   DOI   ScienceOn
29 Verma, S., S. Patel, R. Kaur, Y. T. Chung, B. T. Duk, K. L. Dikshit, B. C. Stark, and D. A. Webster. 2005. Mutational study of the bacterial hemoglobin distal heme pocket. Biochem. Biophys. Res. Commun. 326: 290-297.   DOI   ScienceOn
30 Bodalo, A., J. L. Gomez, E. Gomez, A. M. Hidalgo, M. Gomez, and A. M. Yelo. 2007. Elimination of 4-chlorophenol by soybean peroxidase and hydrogen peroxide: Kinetic model and intrinsic parameters. Biochem. Eng. J. 34: 242-247.   DOI   ScienceOn
31 Ascenzi, P., M. Brunori, M. Coletta, and A. Desideri. 1989. pH effects on the haem iron co-ordination state in the nitric oxide and deoxy derivatives of ferrous horseradish peroxidase and cytochrome c peroxidase. Biochem. J. 258: 473-478.
32 Farres, J. and P. T. Kallio. 2002. Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin. Biotechnol. Prog. 18: 229-233.   DOI   ScienceOn
33 Ling, K. Q. and L. M. Sayre. 2005. Horseradish peroxidasemediated aerobic and anaerobic oxidations of 3-alkylindoles. Bioorg. Med. Chem. 13: 3543-3551.   DOI   ScienceOn
34 Suzuki, T., Y. H. Watanabe, M. Nagasawa, A. Matsuoka, and K. Shikama. 2000. Dual nature of the distal histidine residue in the autoxidation reaction of myoglobin and hemoglobin comparison of the H64 mutants. Eur. J. Biochem. 267: 6166-6174.   DOI   ScienceOn
35 Andersson, C. I., C. Arfvidsson, P. T. Kallio, K. G. Wahlund, and L. Bulow. 2003. Enhanced ribosome and tRNA contents in Escherichia coli expressing a truncated Vitreoscilla hemoglobin mutant analyzed by flow field-flow fractionation. Biotechnol. Lett. 25: 1499-1504.   DOI   ScienceOn
36 Dubrac, S. and D. Touati. 2002. Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148: 147-156.
37 Fee, J. A. 1991. Regulation of sod genes in Escherichia coli: Relevance to superoxide dismutase function. Mol. Microbiol. 5: 2599-2610.   DOI   ScienceOn
38 Frey, A. D., B. T. Oberle, J. Farres, and P. T. Kallio. 2004. Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro. Plant Biotechnol. J. 2: 221-231.   DOI   ScienceOn
39 Veitch, N. C. 2004. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 65: 249-259.   DOI   ScienceOn
40 Winterbourn, C. C. 1985. Free-radical production and oxidative reactions of hemoglobin. Environ. Health Perspect. 64: 321-330.   DOI
41 Isarankura-Na-Ayudhya, C., P. Panpumthong, T. Tangkosakul, S. Boonpangrak, and V. Prachayasittikul. 2008. Shedding light on the role of Vitreoscilla hemoglobin on cellular catabolic regulation by proteomic analysis. Int. J. Biol. Sci. 4: 71-80.
42 Kaur, R., R. Pathania, V. Sharma, S. C. Mande, and K. L. Dikshit. 2002. Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: New insight into the functional role of VHb. Appl. Environ. Microbiol. 68: 152-160.   DOI   ScienceOn
43 Redaelli, C., E. Monzani, L. Santagostini, L. Casella, A. M. Sanangelantoni, R. Pierattelli, and L. Banci. 2002. Characterization and peroxidase activity of a myoglobin mutant containing a distal arginine. Chembiochem 3: 226-233.   DOI   ScienceOn
44 Wei, X. X. and G. Q. Chen. 2008. Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol. 436: 273-287.   DOI
45 Schiodt, C. B., N. C. Veitch, and K. G. Welinder. 2007. Roles of distal arginine in activity and stability of Coprinus cinereus peroxidase elucidated by kinetic and NMR analysis of the Arg51Gln, -Asn, -Leu, and -Lys mutants. J. Inorg. Biochem. 101: 336-347.   DOI   ScienceOn
46 Arseguel, D. and M. Baboulne. 2004. Removal of phenol from coupling of talc and peroxidase: Application for depollution of waste water containing phenolic compounds. J. Chem. Technol. Biotechnol. 61: 331-335.
47 Finzel, B. C., T. L. Poulos, and J. Kraut. 1984. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J. Biol. Chem. 259: 13027-13036.
48 Nagababu, E. and J. M. Rifkind. 2000. Reaction of hydrogen peroxide with ferrylhemoglobin: Superoxide production and heme degradation. Biochemistry 39: 12503-12511.   DOI   ScienceOn
49 Suwanwong, Y., M. Kvist, C. Isarankura-Na-Ayudhya, N. Tansila, L. Bulow, and V. Prachayasittikul. 2006. Chimeric antibodybinding Vitreoscilla hemoglobin (VHb) mediates redox-catalysis reaction: New insight into the functional role of VHb. Int. J. Biol. Sci. 2: 208-215.
50 Beale, S. I. 1990. Biosynthesis of the tetrapyrrole pigment precursor, delta-aminolevulinic acid, from glutamate. Plant Physiol. 93: 1273-1279.   DOI   ScienceOn