DOI QR코드

DOI QR Code

Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity

  • Isarankura-Na-Ayudhya, Chartchalerm (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University) ;
  • Tansila, Natta (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University) ;
  • Worachartcheewan, Apilak (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University) ;
  • Bulow, Leif (Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University) ;
  • Prachayasittikul, Virapong (Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University)
  • Received : 2009.08.30
  • Accepted : 2009.10.31
  • Published : 2010.03.31

Abstract

Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in catalytic constant ($k_{cat}$) was obtained in P54R variant,which was presumably attributable to the lower rigidity and higher hydrophilicity of the distal cavity arising from substitution of proline to arginine. None of the modifications altered the affinity towards either $H_2O_2$ or ABTS substrate. Spectroscopic studies revealed that VHb variants harboring the T29H mutation apparently demonstrated a spectral shift in both ferric and ferrous forms (406-408 to 411 nm, and 432 to 424-425 nm, respectively). All VHb proteins in the ferrous state had a $\lambda_{soret}$ peak at ~419 nm following the carbon monoxide (CO) binding. Expression of the P54R mutant mediated the downregulation of iron superoxide dismutase (FeSOD) as identified by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting (PMF). According to the high peroxidase activity of P54R, it could effectively eliminate autoxidation-derived $H_2O_2$, which is a cause of heme degradation and iron release. This decreased the iron availability and consequently reduced the formation of the $Fe^{2+}$-ferric uptake regulator protein ($Fe^{2+}$-Fur), an inducer of FeSOD expression.

Keywords

References

  1. Adams, P. A. 1990. The peroxidasic activity of the haem octapeptide microperoxidase-8(MP-8): The kinetic mechanism of the catalytic reduction of $H_{2}O_{2}$ by MP-8 using 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) as reducing substrate. J. Chem. Soc. Perkin Trans. 2: 1407-1414.
  2. Allocatelli, C. T., F. Cutruzzola, A. Brancaccio, M. Brunori, J. Qin, and G. N. La Mar. 1993. Structural and functional characterization of sperm whale myoglobin mutants: Role of arginine (E10) in ligand stabilization. Biochemistry 32: 6041-6049. https://doi.org/10.1021/bi00074a015
  3. Andersson, C. I., C. Arfvidsson, P. T. Kallio, K. G. Wahlund, and L. Bulow. 2003. Enhanced ribosome and tRNA contents in Escherichia coli expressing a truncated Vitreoscilla hemoglobin mutant analyzed by flow field-flow fractionation. Biotechnol. Lett. 25: 1499-1504. https://doi.org/10.1023/A:1025475703006
  4. Arseguel, D. and M. Baboulne. 2004. Removal of phenol from coupling of talc and peroxidase: Application for depollution of waste water containing phenolic compounds. J. Chem. Technol. Biotechnol. 61: 331-335.
  5. Ascenzi, P., M. Brunori, M. Coletta, and A. Desideri. 1989. pH effects on the haem iron co-ordination state in the nitric oxide and deoxy derivatives of ferrous horseradish peroxidase and cytochrome c peroxidase. Biochem. J. 258: 473-478.
  6. Bauer, F. and H. Sticht. 2007. A proline to glycine mutation in the Lck SH3-domain affects conformational sampling and increases ligand binding affinity. FEBS Lett. 581: 1555-1560. https://doi.org/10.1016/j.febslet.2007.03.012
  7. Beale, S. I. 1990. Biosynthesis of the tetrapyrrole pigment precursor, delta-aminolevulinic acid, from glutamate. Plant Physiol. 93: 1273-1279. https://doi.org/10.1104/pp.93.4.1273
  8. Berglund, G. I., G. H. Carlsson, A. T. Smith, H. Szoke, A. Henriksen, and J. Hajdu. 2002. The catalytic pathway of horseradish peroxidase at high resolution. Nature 417: 463-468. https://doi.org/10.1038/417463a
  9. Bodalo, A., J. L. Gomez, E. Gomez, A. M. Hidalgo, M. Gomez, and A. M. Yelo. 2007. Elimination of 4-chlorophenol by soybean peroxidase and hydrogen peroxide: Kinetic model and intrinsic parameters. Biochem. Eng. J. 34: 242-247. https://doi.org/10.1016/j.bej.2006.12.009
  10. Bolognesi, M., A. Boffi, M. Coletta, A. Mozzarelli, A. Pesce, C. Tarricone, and P. Ascenzi. 1999. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: A thermodynamic, kinetic and X-ray crystallographic study. J. Mol. Biol. 291: 637-650. https://doi.org/10.1006/jmbi.1999.2975
  11. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  12. Delano, W. L. 1998. The PyMOL Molecular Graphic System. Delano Scientific LLC, San Carlos, CA (http://www.pymol.org).
  13. Dubrac, S. and D. Touati. 2002. Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148: 147-156.
  14. Fan, C., J. Zhong, R. Guan, and G. Li. 2003. Direct electrochemical characterization of Vitreoscilla sp. hemoglobin entrapped in organic films. Biochim. Biophys. Acta 1649: 123-126. https://doi.org/10.1016/S1570-9639(03)00162-6
  15. Farres, J. and P. T. Kallio. 2002. Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin. Biotechnol. Prog. 18: 229-233. https://doi.org/10.1021/bp010159v
  16. Fee, J. A. 1991. Regulation of sod genes in Escherichia coli: Relevance to superoxide dismutase function. Mol. Microbiol. 5: 2599-2610. https://doi.org/10.1111/j.1365-2958.1991.tb01968.x
  17. Finzel, B. C., T. L. Poulos, and J. Kraut. 1984. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J. Biol. Chem. 259: 13027-13036.
  18. Frey, A. D., B. T. Oberle, J. Farres, and P. T. Kallio. 2004. Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro. Plant Biotechnol. J. 2: 221-231. https://doi.org/10.1111/j.1467-7652.2004.00066.x
  19. Geckil, H., S. Gencer, H. Kahraman, and S. O. Erenler. 2003. Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: Cell growth, survival, and antioxidant enzyme status under oxidative stress. Res. Microbiol. 154: 425-431. https://doi.org/10.1016/S0923-2508(03)00083-4
  20. George, P. 1953. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. I. Titration with reducing agents. Biochem. J. 54: 267-276.
  21. Isarankura-Na-Ayudhya, C., P. Panpumthong, T. Tangkosakul, S. Boonpangrak, and V. Prachayasittikul. 2008. Shedding light on the role of Vitreoscilla hemoglobin on cellular catabolic regulation by proteomic analysis. Int. J. Biol. Sci. 4: 71-80.
  22. Kaur, R., R. Pathania, V. Sharma, S. C. Mande, and K. L. Dikshit. 2002. Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: New insight into the functional role of VHb. Appl. Environ. Microbiol. 68: 152-160. https://doi.org/10.1128/AEM.68.1.152-160.2002
  23. Khosla, C. and J. E. Bailey. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633-635. https://doi.org/10.1038/331633a0
  24. Khosla, C., J. E. Curtis, J. DeModena, U. Rinas, and J. E. Bailey. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology (NY) 8: 849-853. https://doi.org/10.1038/nbt0990-849
  25. Kvist, M., E. S. Ryabova, E. Nordlander, and L. Bulow. 2007. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J. Biol. Inorg. Chem. 12: 324-334. https://doi.org/10.1007/s00775-006-0190-x
  26. Ling, K. Q. and L. M. Sayre. 2005. Horseradish peroxidasemediated aerobic and anaerobic oxidations of 3-alkylindoles. Bioorg. Med. Chem. 13: 3543-3551. https://doi.org/10.1016/j.bmc.2005.02.013
  27. Liu, C. Y. and D. A. Webster. 1974. Spectral characteristics and interconversions of the reduced oxidized and oxygenated forms of purified cytochrome o. J. Biol. Chem. 249: 4261-4266.
  28. Matsui, T., S. Ozaki, E. Liong, G. N. Phillips Jr., and Y. Watanabe. 1999. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide. J. Biol. Chem. 274: 2838-2844. https://doi.org/10.1074/jbc.274.5.2838
  29. Miessler, G. L. and D. A. Tarr. 2004. Inorganic Chemistry, 3rd Ed. Prentice Hall, Upper Saddle River, New Jersey.
  30. Nagababu, E., F. J. Chrest, and J. M. Rifkind. 2003. Hydrogenperoxide-induced heme degradation in red blood cells: The protective roles of catalase and glutathione peroxidase. Biochim. Biophys. Acta 1620: 211-217. https://doi.org/10.1016/S0304-4165(02)00537-8
  31. Nagababu, E. and J. M. Rifkind. 2000. Heme degradation during autoxidation of oxyhemoglobin. Biochem. Biophys. Res. Commun. 273: 839-845. https://doi.org/10.1006/bbrc.2000.3025
  32. Nagababu, E. and J. M. Rifkind. 2000. Reaction of hydrogen peroxide with ferrylhemoglobin: Superoxide production and heme degradation. Biochemistry 39: 12503-12511. https://doi.org/10.1021/bi992170y
  33. Patapas, J., M. M. Al-Ansari, K. E. Taylor, J. K. Bewtra, and N. Biswas. 2007. Removal of dinitrotoluenes from water via reduction with iron and peroxidase-catalyzed oxidative polymerization: A comparison between Arthromyces ramosus peroxidase and soybean peroxidase. Chemosphere 67: 1485-1491. https://doi.org/10.1016/j.chemosphere.2006.12.040
  34. Redaelli, C., E. Monzani, L. Santagostini, L. Casella, A. M. Sanangelantoni, R. Pierattelli, and L. Banci. 2002. Characterization and peroxidase activity of a myoglobin mutant containing a distal arginine. Chembiochem 3: 226-233. https://doi.org/10.1002/1439-7633(20020301)3:2/3<226::AID-CBIC226>3.0.CO;2-7
  35. Rodriguez-Lopez, J. N., A. T. Smith, and R. N. Thorneley. 1996. Role of arginine 38 in horseradish peroxidase. A critical residue for substrate binding and catalysis. J. Biol. Chem. 271: 4023-4030. https://doi.org/10.1074/jbc.271.8.4023
  36. Roos, V., C. I. Andersson, C. Arfvidsson, K. G. Wahlund, and L. Bulow. 2002. Expression of double Vitreoscilla hemoglobin enhances growth and alters ribosome and tRNA levels in Escherichia coli. Biotechnol. Prog. 18: 652-656. https://doi.org/10.1021/bp020005v
  37. Schiodt, C. B., N. C. Veitch, and K. G. Welinder. 2007. Roles of distal arginine in activity and stability of Coprinus cinereus peroxidase elucidated by kinetic and NMR analysis of the Arg51Gln, -Asn, -Leu, and -Lys mutants. J. Inorg. Biochem. 101: 336-347. https://doi.org/10.1016/j.jinorgbio.2006.10.007
  38. Suwanwong, Y., M. Kvist, C. Isarankura-Na-Ayudhya, N. Tansila, L. Bulow, and V. Prachayasittikul. 2006. Chimeric antibodybinding Vitreoscilla hemoglobin (VHb) mediates redox-catalysis reaction: New insight into the functional role of VHb. Int. J. Biol. Sci. 2: 208-215.
  39. Suzuki, T., Y. H. Watanabe, M. Nagasawa, A. Matsuoka, and K. Shikama. 2000. Dual nature of the distal histidine residue in the autoxidation reaction of myoglobin and hemoglobin comparison of the H64 mutants. Eur. J. Biochem. 267: 6166-6174. https://doi.org/10.1046/j.1432-1327.2000.01685.x
  40. Tarricone, C., A. Galizzi, A. Coda, P. Ascenzi, and M. Bolognesi. 1997. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure 5: 497-507. https://doi.org/10.1016/S0969-2126(97)00206-2
  41. Tsuruga, M., A. Matsuoka, A. Hachimori, Y. Sugawara, and K. Shikama. 1998. The molecular mechanism of autoxidation for human oxyhemoglobin. Tilting of the distal histidine causes nonequivalent oxidation in the beta chain. J. Biol. Chem. 273: 8607-8615. https://doi.org/10.1074/jbc.273.15.8607
  42. Veitch, N. C. 2004. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 65: 249-259. https://doi.org/10.1016/j.phytochem.2003.10.022
  43. Verma, S., S. Patel, R. Kaur, Y. T. Chung, B. T. Duk, K. L. Dikshit, B. C. Stark, and D. A. Webster. 2005. Mutational study of the bacterial hemoglobin distal heme pocket. Biochem. Biophys. Res. Commun. 326: 290-297. https://doi.org/10.1016/j.bbrc.2004.11.025
  44. Wakabayashi, S., H. Matsubara, and D. A. Webster. 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481-483. https://doi.org/10.1038/322481a0
  45. Wei, X. X. and G. Q. Chen. 2008. Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol. 436: 273-287. https://doi.org/10.1016/S0076-6879(08)36015-7
  46. Winterbourn, C. C. 1985. Free-radical production and oxidative reactions of hemoglobin. Environ. Health Perspect. 64: 321-330. https://doi.org/10.1289/ehp.8564321
  47. Yang, G., R. Yuan, and Y. Q. Chai. 2008. A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloids Surf. B Biointerfaces 61: 93-100. https://doi.org/10.1016/j.colsurfb.2007.07.014
  48. Zhang, J. and M. Oyama. 2004. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim. Acta 50: 85-90. https://doi.org/10.1016/j.electacta.2004.07.026
  49. Zhang, K., L. Mao, and R. Cai. 2000. Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta 51: 179-186. https://doi.org/10.1016/S0039-9140(99)00277-5
  50. Zhang, L., Y. Li, Z. Wang, Y. Xia, W. Chen, and K. Tang. 2007. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol. Adv. 25: 123-136. https://doi.org/10.1016/j.biotechadv.2006.11.001

Cited by

  1. Improved biomass and protein production in solid-state cultures of an Aspergillus sojae strain harboring the Vitreoscilla hemoglobin vol.99, pp.22, 2010, https://doi.org/10.1007/s00253-015-6851-3
  2. Construction and Characterization of Vitreoscilla Hemoglobin (VHb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye vol.25, pp.9, 2010, https://doi.org/10.4014/jmb.1411.11001
  3. Engineering of Bifunctional Enzymes with Uricase and Peroxidase Activities for Simple and Rapid Quantification of Uric Acid in Biological Samples vol.10, pp.4, 2010, https://doi.org/10.3390/catal10040428
  4. Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin vol.9, pp.7, 2010, https://doi.org/10.3390/microorganisms9071455