• Title/Summary/Keyword: ionomers

Search Result 66, Processing Time 0.031 seconds

Molecular Interactions of Soaked Nonionic Dye in Ionomer Films (아이오노머 필름에 흡수된 비이온계 염료의 분자간 상호작용에 관한 연구)

  • ;;;;;;Forrest A. Landis;Robert B. Moore
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.671-678
    • /
    • 2001
  • Sodium and zinc salts of poly(ethyaene-co-methacrylic acid) ionomers consist of three phases, i.e. ionic aggregates, amorphous, and crystalline phases. Dye molecules after soaked from the methanol solution are located near the amorphous phase or ionic aggregates within ionomer films. Depending on the location of the molecules in the ionomer film, they are under influence of dispersion forces (ethylene parts), polar forces (acid parts). and ionic dipole (ionic aggregates) interactions. The UV/Vis absorption peak of Nile Red under the dispersion force is found at near 500 nm, for the dye under the polar force effect 525 nm, and 550 and 610 nm for the dyes under $Na^+$ and $Zn^{2+}$ ionization effects, respectively. Since the divalent $Zn^{2+}$ ion has larger ionic dipole than the monovalent $Na^+$ ion, the larger red-shift of the absorption band due to the ionic dipole interaction is observed for $Zn^{2+}$ counter ion.

  • PDF

Self-healing Engineering Materials: I. Organic Materials (자기치유 공학재료: I. 유기 재료)

  • Choi, Eun-Ji;Wang, Jing;Yoon, Ji-Hwan;Shim, Sang-Eun;Yun, Ju-Ho;Kim, Il
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Scientists and engineers have altered the properties of materials such as metals, alloys, polymers, ceramics, and so on, to suit the ever changing needs of our society. Man-made engineering materials generally demonstrate excellent mechanical properties, which often tar exceed those of natural materials. However, all such engineering materials lack the ability of self-healing, i.e. the ability to remove or neutralize microcracks without intentional human interaction. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account. Various self-healing ptotocols that can be applied for the organic materials such as polymers, ionomers and composites can be developed by utilizing suitable chemical reactions and physical intermolecular interactions.

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

Low temperature preparation of Pt alloy electrocatalysts for DMFC

  • Song, Min-Wu;Lee, Kyeong-Seop;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.171-171
    • /
    • 2009
  • The electrodes are usually made of a porous mixture of carbon-supported platinum and ionomers. $SnO_2$ particles provide as supports that have been used for DMFCs, and it have high catalytic activities toward methanol oxidation. The main advantage of $SnO_2$ supported electrodes is that it has strong chemical interactions with metallic components. The high activity to a synergistic bifunctional mechanism in which Pt provides the adsorption sites for CO, while oxygen adsorbs dissociative on $SnO_2$. The reaction between the adsorbed species occurs at the Pt/$SnO_2$ boundary. The morphological observations were characterized by FESEM and transmission electron microscopy (TEM). $SnO_2$ particles crystallinity was analyzed by the X-ray diffraction (XRD). The surface bonded state of the $SnO_2$ particles and electrode materials were observed by the X-ray photoelectron spectroscopy (XPS). The electric properties of the Pt/$SnO_2$ catalyst for methanol oxidation have been investigated by the cyclic voltametry (CV) in 0.1M $H_2SO_4$ and 0.1M MeOH aqueous solution. The peak current density of methanol oxidation was increased as the $SnO_2$ content in the anode catalysts increased. Pt/$SnO_2$ catalysts improve the removal of CO ads species formed on the platinum surface during methanol electro-oxidation.

  • PDF

Preparation and Characterization of Sulfonated Poly(Arylene Ether Sulfone) Random Copolymer Reinforced Membranes for Fuel Cells (연료전지용 술폰화 폴리아릴렌에테르술폰 랜덤공중합체 강화복합막의 제조 및 특성)

  • Ahn, Juhee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.146-151
    • /
    • 2016
  • Sulfonated poly (arylene ether sulfone) (SPAES) random copolymers have merits such as high proton conductivity, relatively low production cost, and thermochemical resistance when applied as polymer electrolyte membranes for fuel cells. However, it is difficult to directly employ SPAES copolymers into practical fuel cell membrane applications owing to their low chemical stability and dimensional instability under harsh operation conditions. A plausible solution is to impregnate SPAES copolymers into support films (e.g., electrospun polyimide support) with interconnected pore structures and high thermochemical toughness. In this study, a SPAES copolymer with a swivel group, which induces high free volume for fast ion transport, is chosen as ionomers to prepare pore-filling membranes (PFMs). The feasibility of the resulting membranes is evaluated via membrane characterizations.

Comparative assessment of antibacterial activity of different glass ionomer cements on cariogenic bacteria

  • Naik, Rahul Gaybarao;Dodamani, Arun Suresh;Khairnar, Mahesh Ravindra;Jadhav, Harish Chaitram;Deshmukh, Manjiri Abhay
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.278-282
    • /
    • 2016
  • Objectives: Glass ionomer cements (GICs), which are biocompatible and adhesive to the tooth surface, are widely used nowadays for tooth restoration. They inhibit the demineralization and promote the remineralization of the tooth structure adjacent to the restoration, as well as interfere with bacterial growth. Hence, the present study was conducted to assess and compare the antimicrobial activity of three commercially available GICs against two cariogenic bacteria. Materials and Methods: An agar plate diffusion test was used for evaluating the antimicrobial effect of three different GICs (Fuji IX, Ketac Molar, and d-tech) on Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus). Thirty plates were prepared and divided into two groups. The first group was inoculated with S. mutans, and the second group was inoculated with L. acidophilus. These plates were then incubated at $37^{\circ}C$ for 24 hours. Zones of bacterial growth inhibition that formed around each well were recorded in millimeters (mm). Results: The zones of inhibition for Fuji IX, Ketac Molar, and d-tech on S. mutans were found to be $10.84{\pm}0.22mm$, $10.23{\pm}0.15mm$, and $15.65{\pm}0.31mm$, respectively, whereas those for L. acidophilus were found to be $10.43{\pm}0.12mm$, $10.16{\pm}0.11mm$, and $15.57{\pm}0.13mm$, respectively. Conclusions: D-tech cement performed better in terms of the zone of bacterial inhibition against the two test bacteria, than the other two tested glass ionomers.

A STUDY ON THE HYGROSCOPIC EXPANSION OF COMPOMER (컴포머의 수화팽창에 관한 연구)

  • Park, Kyung-Jin;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • Compomer, like resin composite, undergoes shrinkage during setting. But, due to the structure of glass ionomers and their hydrophilic nature, water sorption and subsequent expansion may lead to compensation of the shrinkage. The purpose of this study was to, evaluate the change of mliroleakage after 30day-water-storage of compomer and composite resin. 40 sound third molars were used for the microleakage test. Z-100 resin was used for the control groups(Group I and III), Dyract AP for the experimental groups(Group II and IV). The storage time was 1 day in Group I, II and 30days in Group III, IV. The result from the this study can be summarized as follows; 1. No significant difference could be found in microleakage of occlusal margin between each group(p>0.05). 2. In microleakage of gingival margin, no significant difference could be found between group I and II, and between group I and III (p>0.05). 3. Group IV was showed less microleakage than group II and group III in gingival margin(p<0.05).

  • PDF

Polymer Electrolyte Membranes of Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer for Fuel Cell (연료전지용 Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer의 고분자 전해질 분리막)

  • Garcia, Edwin D.;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.252-262
    • /
    • 2019
  • A sulfonated star branched poly(styrene-b-butadiene-b-styrene) triblock copolymer (SSBS) was synthesized with varying degrees of sulfonation. The effective sulfonation on the butadiene block was confirmed by FT-IR spectroscopy. Ion exchange capacity by titration was used to determine the degree of sulfonation. The synthesized polymer observed enhanced water uptake and proton conductivity. At room temperature, the SSBS with 25 mol% degree of sulfonation showed an outstanding proton conductivity of 0.114 S/cm, similar to that of commercial membrane, Nafion. The effect of temperature at constant relative humidity on conductivity resulted to a remarkable increase in proton conductivity. Methanol permeability studies showed a value lower than Nafion for all the sulfonated membranes. Structural nature observed using AFM showed that the membranes observed microphase separated nanostructures and the connectivity of the interionic channels.

Development of Molecular Dynamics Model for Water Electrolysis Ionomer (수전해용 이오노머 분자동역학 모델 개발)

  • Kang, Hoseong;Park, Chi Hoon;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.433-442
    • /
    • 2020
  • In this study, in order to build a molecular dynamics simulation model of ionomer for water electrolysis, an ionomer model that reflects the characteristics of a water electrolysis system in which excess water molecules exist was compared to an ionomer built according to the conventional simulation method of the fuel cells membrane. The final ionomer MD models have a strong phase separation and water channel that is one of the important characteristics of the perfluorinated ionomer, and are stable and water-insoluble under excessive water and high temperature conditions. In the ionomer MD models built in this study, the excess water molecules decrease an ion conductivity due to the dilution of ions, but increase a hydrogen diffusivity. Therefore, it is necessary to design the molecular structure of ionomers for water electrolysis in experimental studies as well as molecular dynamics studies according to the characteristics of the water electrolysis system reported in this study.

Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis (음이온교환막 수전해 촉매기술 동향)

  • Kim, Jiyoung;Lee, Kiyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2022
  • The anion exchange membrane (AEM) water electrolysis for high purity hydrogen production is attracting attention as a next-generation green hydrogen production technology by using inexpensive non-noble metal-based catalysts instead of conventional precious metal catalysts used in proton exchange membrane (PEM) water electrolysis systems. However, since AEM water electrolysis technology is in the early stages of development, it is necessary to develop research on AEM, ionomers, electrode supports and catalysts, which are key elements of AEM water electrolysis. Among them, current research in the field of catalysts is being studied to apply a previously developed half-cell catalyst for alkali to the AEM system, and the applied catalyst has disadvantages of low activity and durability. Therefore, this review presented a catalyst synthesis technique that promoted oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) using a non-noble metal-based catalyst in an alkaline medium.