Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.433

Development of Molecular Dynamics Model for Water Electrolysis Ionomer  

Kang, Hoseong (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
Lee, Chang Hyun (Energy Engineering Department, Dankook University)
Publication Information
Membrane Journal / v.30, no.6, 2020 , pp. 433-442 More about this Journal
Abstract
In this study, in order to build a molecular dynamics simulation model of ionomer for water electrolysis, an ionomer model that reflects the characteristics of a water electrolysis system in which excess water molecules exist was compared to an ionomer built according to the conventional simulation method of the fuel cells membrane. The final ionomer MD models have a strong phase separation and water channel that is one of the important characteristics of the perfluorinated ionomer, and are stable and water-insoluble under excessive water and high temperature conditions. In the ionomer MD models built in this study, the excess water molecules decrease an ion conductivity due to the dilution of ions, but increase a hydrogen diffusivity. Therefore, it is necessary to design the molecular structure of ionomers for water electrolysis in experimental studies as well as molecular dynamics studies according to the characteristics of the water electrolysis system reported in this study.
Keywords
water electrolysis system; ionomer; molecular dynamics; excessive water uptake; ion and hydrogen transport properties;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011).   DOI
2 S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015).   DOI
3 C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent development trends of cation exchange membrane materials", Membr. J., 12, 1 (2002).
4 H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", Membr. J., 20, 40 (2010).
5 C. H. Park, T.-H. Kim, S. Y. Nam, and Y. T. Hong, "Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition", Int. J. Hydrogen Energy, 44, 2340 (2019).   DOI
6 S. L. Lewis, "The Paris Agreement has solved a troubling problem", Nature, 532, 283 (2016).   DOI
7 P. J. Egan and M. Mullin, "Recent improvement and projected worsening of weather in the United States", Nature, 532, 357 (2016).   DOI
8 J. Watson, "Bring climate change back from the future", Nature, 534, 437 (2016).   DOI
9 R. A. Betts, C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy, "El Nino and a record CO2 rise", Nat. Clim. Change., 6, 806 (2016).   DOI
10 K. S. Im, T. Y. Son, K. Kim, J. F. Kim, and S. Y. Nam, "Research and development trend of electrolyte membrane applicable to water electrolysis system", Appl. Chem. Eng., 30, 389 (2019).   DOI
11 H. Choi, C. Rhyu, S. Lee, C. Byun, and G. Hwang, "Study on anion exchange membrane for the alkaline electrolysis", Trans. Korean. Hydrog. New Energy Soc., 22, 184 (2011).   DOI
12 G.-J. Hwang, K.-S. Kang, H.-J. Han, and J.-W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans. Korean. Hydrog. New Energy Soc., 18, 95 (2007).
13 K. E. Ayers, E. B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki, "Research advances towards low cost, high efficiency PEM electrolysis", ECS Trans., 33, 3 (2010).
14 B. Bae, E. Kim, S. Lee, and H. Lee, "Research rrends of anion exchange membranes within alkaline fuel cells", New. Renew. Ener., 11, 52 (2015).   DOI
15 M. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, "Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis", Int. J. Eng. Adv. Technol., 4, 2249 (2015).
16 C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016).   DOI
17 J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017).   DOI
18 H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998).   DOI
19 H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 47 (2016).   DOI
20 H. Sun, P. Ren, and J. Fried, "The COMPASS force field: Parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998).   DOI
21 H. Kang and C. H. Park, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018).   DOI
22 H. Lim, B. Lee, D. Yun, A. Z. Al Munsur, J. E. Chae, S. Y. Lee, H.-J. Kim, S. Y. Nam, C. H. Park, and T.-H. Kim, "Poly (2,6-dimethyl-1,4-phenylene oxide) s with various head groups: Effect of head groups on the properties of anion exchange membranes", ACS Appl. Mater. Interfaces, 10, 41279 (2018).   DOI
23 C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010).   DOI
24 F. ezzahra Chakik, M. Kaddami, and M. Mikou, "Effect of operating parameters on hydrogen production by electrolysis of water", Int. J. Hydrogen Energy, 42, 25550 (2017).   DOI
25 C. Rizzuto, A. Caravella, A. Brunetti, C. H. Park, Y. M. Lee, E. Drioli, G. Barbieri, and E. Tocci, "Sorption and diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation", J. Membr. Sci., 528, 135 (2017).   DOI
26 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines", J. Chem. Phys., 21, 1087 (1953).   DOI
27 H. Kang and P. Chi Hoon, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018).   DOI
28 C. Yin, Z. Wang, Y. Luo, J. Li, Y. Zhou, X. Zhang, H. Zhang, P. Fang, and C. He, "Thermal annealing on free volumes, crystallinity and proton conductivity of Nafion membranes", J. Phys. Chem. Solids, 120, 71 (2018).   DOI
29 J.-W. Lee, Y.-T. Yoo, and J. Y. Lee, "Characterization of Nafion nanocomposites with spheric silica, layered silicate, and amphiphilic organic molecule and their actuator application", Macromol. Res., 23, 167 (2015).   DOI