Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.5.252

Polymer Electrolyte Membranes of Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer for Fuel Cell  

Garcia, Edwin D. (Department of Environmental Engineering and Energy, Myongji University)
Jung, Bumsuk (Department of Environmental Engineering and Energy, Myongji University)
Publication Information
Membrane Journal / v.29, no.5, 2019 , pp. 252-262 More about this Journal
Abstract
A sulfonated star branched poly(styrene-b-butadiene-b-styrene) triblock copolymer (SSBS) was synthesized with varying degrees of sulfonation. The effective sulfonation on the butadiene block was confirmed by FT-IR spectroscopy. Ion exchange capacity by titration was used to determine the degree of sulfonation. The synthesized polymer observed enhanced water uptake and proton conductivity. At room temperature, the SSBS with 25 mol% degree of sulfonation showed an outstanding proton conductivity of 0.114 S/cm, similar to that of commercial membrane, Nafion. The effect of temperature at constant relative humidity on conductivity resulted to a remarkable increase in proton conductivity. Methanol permeability studies showed a value lower than Nafion for all the sulfonated membranes. Structural nature observed using AFM showed that the membranes observed microphase separated nanostructures and the connectivity of the interionic channels.
Keywords
sulfonation; block copolymer ionomers; polymer electrolyte membranes; fuel cell; morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. A. Kerres, "Blended and cross-linked ionomer membranes for application in membrane fuel cells", Fuel Cells, 5, 230 (2005).   DOI
2 L. Gubler, S. A. Gürsel, and G. G. Scherer, "Radiation grafted membranes for polymer electrolyte fuel cells", Fuel cells, 5, 317 (2005).   DOI
3 J. Kim, B. Kim, B. Jung, Y. S. Kang, H. Y. Ha, I. H. Oh, and K. J. Ihn, "Effects of casting solvent on morphology and physical properties of partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)- block-polystyrene copolymers", Macromol. Rapid Comm., 23, 753 (2002).   DOI
4 B. Kim, J. Kim, B. J. Cha, and B. Jung, "Effect of selective swelling on protons and methanol transport properties through partially sulfonated block copolymer membranes", J. Membr. Sci., 280, 270 (2006).   DOI
5 M. A. Hickner and B. S. Pivovar, "The chemical and structural nature of proton exchange membrane fuel cell properties", Fuel cell, 5, 213 (2005).   DOI
6 G. N. B. Barona, B. J. Cha, and B. Jung, "Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation", J. Membr. Sci., 290, 46 (2007).   DOI
7 F. Trotta, E. Drioli, G. Moraglio, and E. B. Poma, "Sulfonation of polyetheretherketone by chlorosulfuric acid", J. Appl. Polym. Sci., 70, 470 (1998).
8 W. Schnabel, G. F. Levchik, C. A. Wilkie, D. D. Jiang, and S. V. Levchik, "Thermal degradation of polystyrene, poly(1,4-butadiene) and copolymers of styrene and 1,4-butadiene irradiated under air or argon with $^{60}Co-rays$", Polym. Degrad. Stabil., 63, 365 (1999).   DOI
9 D. Suleiman, Y. A. Elabd, E. Napadensky, J. M. Sloan, and D. M. Crawford, "Thermogravimetric characterization of sulfonated poly(styrene-isobutylene-styrene) block copolymers: Effects of processing conditions", Thermochimica Acta, 430, 149 (2005).   DOI
10 Y. F. Zhang, J. Li, L. Ma, W. W. Cai, and H. S. Cheng, "Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement", Energy Technol., 3, 675 (2015).   DOI
11 J. Li and H. Yu, "Synthesis and characterization of sulfonated poly(benzoxazole ether ketone)s by direct copolymerization as novel polymers for proton-exchange membranes", J. Polym. Sci. A, Polym. Chem., 45, 273 (2007).
12 Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, "Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell", J. Membr. Sci., 220, 31 (2003).   DOI
13 X. Zhang, S. Liu, and J. Yin, "Synthesis and characterization of a new block copolymer for proton exchange membrane", J. Membr. Sci., 258, 78 (2005).   DOI
14 J. J. Sumner, S. E. Creager, J. J. Ma, and D. D. DesMarteau, "Proton conductivity in Nafion$^{(R)}$ 117 and in a novel Bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane", J. Electrochem. Soc., 145, 107 (1998).   DOI
15 N. A. Agudelo, J. Palacio, and B. L. Lopez, "Effect of the preparation method on the morphology and proton conductivity of membranes based on sulfonated ABA triblock copolymers", J. Mater. Sci., 54, 4135 (2019).   DOI
16 Z. Zhuang, D. Qi, C. Zhao, and H. Na, "A novel highly sensitive humidity sensor derived from sulfonated poly(ether ether ketone) with metal salts-ion substitution", Sensors and Actuators B: Chemical, 236, 701 (2016).   DOI
17 "Ionomers: Characterization, theory, and applications", Schlick, S., Ed., CRC, Boca Raton, FL (1996).
18 T. R. Earnest jr, and W. J. MacKnight, "Infrared studies of hydrogen bonding in ethylene-methacrylic acid copolymers and ionomers", Macromolecules, 13, 844 (1980).   DOI
19 Y. A. Elabd and E. Napadensky, "Sulfonation and characterization of poly(styrene-isobutylene-styrene) triblock copolymers at high ion-exchange capacities", Polymer, 45, 3037 (2004).   DOI
20 Y. A. Elabd and M. A. Hickner, "Block copolymers for fuel cells", Macromolecules, 44, 1 (2011).   DOI
21 J. Li, G. Xu, X. Luo, J. Xiong, Z. Liu, and W. Cai, "Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application", Appl. Energy, 213, 408 (2018).   DOI
22 K. Kordesch and G. Simander, "Fuel cells and their applications", Wiley-VCH, Weinheim (1996).
23 B. Kim and B. Jung, "Partially sulfonated polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide) blend membranes for fuel cells", Macromol. Rapid Comm., 25, 1263 (2004).   DOI
24 C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application", Ind. Eng. Chem. Res., 44, 7617 (2005).   DOI