Browse > Article
http://dx.doi.org/10.7464/ksct.2011.17.1.001

Self-healing Engineering Materials: I. Organic Materials  

Choi, Eun-Ji (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Wang, Jing (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Yoon, Ji-Hwan (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Shim, Sang-Eun (Department of Chemical Engineering, Inha University)
Yun, Ju-Ho (Environmental Materials & Components R&D Center, Korea Automotive Technology Institute)
Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Publication Information
Clean Technology / v.17, no.1, 2011 , pp. 1-12 More about this Journal
Abstract
Scientists and engineers have altered the properties of materials such as metals, alloys, polymers, ceramics, and so on, to suit the ever changing needs of our society. Man-made engineering materials generally demonstrate excellent mechanical properties, which often tar exceed those of natural materials. However, all such engineering materials lack the ability of self-healing, i.e. the ability to remove or neutralize microcracks without intentional human interaction. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account. Various self-healing ptotocols that can be applied for the organic materials such as polymers, ionomers and composites can be developed by utilizing suitable chemical reactions and physical intermolecular interactions.
Keywords
Composites; Elastomers; Organic materials; Polymers; Self-healing materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bleay, S. M., Loader, C. B., Hawyes, V. J., Humberstone, L., and Curtis, P. T., "A Smart Repair System for Polymer Matrix Composites," Composites A., 32, 1767-1776 (2001).   DOI   ScienceOn
2 Trask, R. S., and Bond, I. P., "Biomimetic Self-healing of Advanced Composite Structures Using Hollow Glass Fibres," Smart Mater. Struct., 15, 704-710 (2006).   DOI   ScienceOn
3 Trask, R. S., Williams, G. J., and Bond, I. P., "Bioinspired Self-healing of Advanced Composite Structures Using Hollow Glass Fibres," J. R. Soc. Interface, 4, 363-371 (2007).   DOI   ScienceOn
4 Trask, R. S., Williams, H., and Bond, I. P., "Self-healing Polymer Composites: Mimicking Nature to Enhance Performance," Bioinspir. Biomim., 2, 1-9 (2007).   DOI   ScienceOn
5 van der Zwaag, S., "Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," vol. 100, Springer Series in Materials Science, Dordrecht, The Netherlands, Springer, 2007.
6 Sijbesma, R. P., Beijer, F. H., Brunsveld, L., Folmer, B. J. B., Hirschberg, J. H. K., Lange, R. F. M., Lowe, J. K. L., and Meijer, E. W., "Reversible Polymers Formed from Selfcomplementary Monomers Using Quadruple Hydrogen Bonding," Science, 278, 1601-1604 (1997).   DOI
7 Cordier, P., Tournhilac, F., Soulie-Ziakovic, C., and Leibler, L., "Self-healing in a Thermoreversible Rubber from Supramolecular Assembly," Nature, 451, 977-980 (2008).   DOI   ScienceOn
8 Dry, C., "Matrix Cracking Repair and Filling Using Active and Passive Modes for Smart Timed Release of Chemicals from Fibres into Cement Matrices," Smart Mater. Struct., 3, 118-123 (1994).   DOI   ScienceOn
9 Dry, C., "Procedure Developed for Self-repair of Polymer Matrix Composite Materials," Compos. Struct., 35, 263-269 (1996).   DOI   ScienceOn
10 Wakabayashi, K., and Register, R. A., "Morphological Origin of the Multistep Relaxation Behavior in Semicrystalline Ethylene/ Methacrylic Acid Ionomers," Macromolecules, 39, 1079- 1086 (2006).   DOI   ScienceOn
11 Chen, X., Dam, M. A., Ono, K., Mal, A. K., Shen, H., Nutt, S. R., and Wudl, F., "A Thermally Remendable Crosslinked Polymeric Material," Science, 295, 1698-1702 (2002).   DOI   ScienceOn
12 Brown, E. N., Sottos, N. R., and White, S. R., "Fracture Testing of a Self-healing Polymer Composite," Exp. Mech., 42, 372-379 (2002).   DOI   ScienceOn
13 Martin D. Hager, M. D., Greil, P., Leyens, C., van der Zwaag, S., and Schubert, U. S., "Self Healing Materials," Adv. Mater., Article first published online: 13 SEP 2010, DOI: 10.1002/ adma.201003036.
14 Ghosh, S. K., "Self-healing Materials: Fundamentals, Design Strategies, and Applications," Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.
15 Varley, R. J., and van der Zwaag, S., "The Development of a Quasi-static Test Method to Investigate the Origin of Self Healing in Ionomers under Ballistic Conditions," Polym. Test., 27, 11-19 (2008).   DOI   ScienceOn
16 Varley, R. J., and van der Zwaag, S., "Towards an Understanding of Thermally Activated Self-healing of an Ionomer System During Ballistic Penetration," Acta Mater., 56, 5737- 5750 (2008).   DOI   ScienceOn
17 Chen, X., Wudl, F., Mal, A. K., Shen, H., and Nutt, S. R., "New Thermally Remendable Highly Crosslinked Polymeric Materials," Macromolecules, 36, 1802-1807 (2003).   DOI   ScienceOn
18 Mookhoek, S. D., Blaiszik, B.J., Fischer, H.R., Sottos, N.R., White, S.R., and van der Zwaag, S., "Peripherally Decorated Binary Microcapsules Containing Two Liquids," J. Mater. Chem., 18, 5390-5394 (2008).   DOI   ScienceOn
19 White, S. R., Sottos, N. R., Geubell, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., and Viswanathan, S., "Autonomous Healing of Polymer Composites," Nature, 409, 794-797 (2001).   DOI   ScienceOn
20 Dry, C., "Three Designs for the Internal Release of Realants, Adhesives and Waterproofing Chemicals into Concrete," Cement. Concrete. Res., 30, 1969-1977 (2000).   DOI   ScienceOn
21 Hayes, S. A., Jones, F. R., Marshiya, K., and Zhang, W., "A Self-healing Thermosetting Composite Material," Compos. Part A, 38, 1116-1121 (2007).   DOI   ScienceOn
22 Hayes, S. A., Zhang,W., Branthwaite, M., and Jones, F. R., "Self-healing of Damage in Fibrereinforced Polymer-matrix Composites," J. R. Soc. Interface, 4, 381-387 (2007).   DOI   ScienceOn
23 Cho, S. H., Andersson, H. M., White, S. R., Sottos, N. R., and Braun, P. V., "Polydimethylsiloxane-based Self-healing Materials," Adv. Mater., 18, 997-1000 (2006).   DOI   ScienceOn
24 Mookhoek, S. D., Mayo, S. C., Hughes, A. E., Fischer, H. R., and Zwaag, v. d. S., "Applying SEM-Based X-ray Microtomography to Observe Self-healing in Solvent Encapsulated Thermoplastic Materials," Adv. Eng. Mater., 12, 228-234 (2010).   DOI   ScienceOn
25 Brown, E. N., Sottos, N. R., and White, S. R., "Fatigue Crack Propagation in Microcapsule Toughened Epoxy," J. Mater. Sci., 41, 6266-6273 (2006).   DOI   ScienceOn
26 Brown, E. N., Sottos, N. R., and White, S. R., "Microcapsule Induced Toughening in a Self-healing Polymer Composite," J. Mater. Sci., 39, 1703-1710 (2004).   DOI
27 Brown, E. N., White, S. R., and Sottos, N. R., "Retardation and Repair of Fatigue Cracks in a Microcapsule Toughened Epoxy Composite-Part I: Manual Infiltration," Compos. Sci. Technol., 65, 2466-2473 (2005).   DOI   ScienceOn
28 Brown, E. N., White, S. R., and Sottos, N. R., "Retardation and Repair of Fatigue Cracks in a Microcapsule Toughened Epoxy Composite - Part II: In Situ Self-healing," Compos. Sci. Technol., 65, 2474-2480 (2005).   DOI   ScienceOn