• Title/Summary/Keyword: ionic cluster

검색결과 33건 처리시간 0.031초

Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin

  • Won Jong-Ok;Yoo Ji-Young;Kang Moon-Sung;Kang Yong-Soo
    • Macromolecular Research
    • /
    • 제14권4호
    • /
    • pp.449-455
    • /
    • 2006
  • Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated-${\beta}$-cyclodextrins (${\beta}-CDSO_3H$) or phosphated-${\beta}$-cyclodextrins (${\beta}-CDPO(OH)_2$). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either ${\beta}-CDSO_3H$ or ${\beta}-CDPO(OH)_2$ in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.

첨가제에 따른 변성 스티렌계 열가소성 엘라스토머의 마찰에 의한 표면 파괴 거동 연구 (A Study on Friction-induced Surface Fracture Behaviors of Carboxylic Acid Modified Styrenic Thermoplastic Elastomer as Additives)

  • 전준하;박상민;이진혁;엄기용
    • 접착 및 계면
    • /
    • 제16권3호
    • /
    • pp.95-100
    • /
    • 2015
  • 본 연구에서는 실리카, 산화아연, 아연이온이 코팅된 실리카가 carboxylic acid로 변성된 스티렌계 열가소성 엘라스토머(m-TPS) film의 마찰시 표면 파괴에 미치는 영향을 관찰하였다. 일반 실리카를 첨가한 m-TPS film은 실리카 입자간의 강한 filler-filler interaction에 의한 낮은 분산성 때문에 기계적 강도, 내마모성과 마찰시 표면 파괴가 저하되는 것으로 나타났다. 산화아연 또는 아연이온이 코팅된 실리카를 첨가한 m-TPS는 zinc ion과 carboxylic acid group 간의 ionic cluster 형성을 통하여 기계적 강도, 내마모성과 마찰 시 표면 파괴가 개선되었다. Zinc ion과 carboxylic acid group 간의 ionic cluster 형성은 $1550{\sim}1650cm^{-1}$의 zinc carboxylate group stretch 피크의 FT-IR 분석 결과로 확인하였다.

Dynamic Mechanical and Morphological Studies of Styrene-co-Methacrylate and Sulfonated Polystyrene Ionomers Containing Aliphatic Dicarboxylate Salts

  • Luqman, Mohammad;Kim, Joon-Seop;Shin, Kwan-Woo
    • Macromolecular Research
    • /
    • 제17권9호
    • /
    • pp.658-665
    • /
    • 2009
  • This study examined the effects of the sodium salts of aliphatic dicarboxylic acids (DCAs) on the dynamic mechanical properties and morphology of two sets of poly(styrene-co-sodium methacrylate) (MNa) and poly(styrene-co-sodium styrenesulfonate) (SNa) ionomers. When the DCA content was relatively low, the ionic moduli of the MNa and SNa ionomers increased but the matrix and cluster glass transition temperature ($T_g$) did not change significantly. The increasing ionic modulus was almost independent of the type of the ionic groups of the ionomer, and the chain length of DCAs. When a large amount of the sodium succinate (DCA4) was added to the MNa and SNa ionomers, the ionic moduli of the two ionomers increased strongly but the matrix and cluster $T_g's$ increased slightly and significantly, respectively. In the case of sodium hexadecanedioate (DCA 16), DCA 16 increased the ionic moduli of the two ionomers. The addition of DCA16 changed the matrix and cluster $T_g's$ of the MNa ionomer slightly, but decreased the cluster $T_g$ of the SNa ionomer significantly with no change in the matrix $T_g$. In addition, the DCA-containing ionomers showed an X-ray diffraction peak indicating the presence of ordered domains of DC As in the ionomers. Hence, DCA4 acts mainly as a reinforcing filler in MNa and SNa systems. In the case of DCA 16, it initially behaved like a filler but also functioned as a preferential plasticizer for the clusters at high content.

The Effect of Aggregation States on ionic Conductivity of Stolid Polymer Electrolytes Based on Waterborne Polyurethane

  • Bae, Sang-Sik;Jo, Nam-Ju
    • Macromolecular Research
    • /
    • 제9권6호
    • /
    • pp.332-338
    • /
    • 2001
  • Waterborne polyurethane as a new polymer electrolyte was synthesized by using relatively hydrophilic polyols. The morphology of polyurethane was changed as it was dispersed in water. In contrast to polyurethane ionomer, waterborne polyurethane did not form an ionic cluster but produced a binary system composed of hydrophilic and hydrophobic groups. In the colloidal system, the former and the latter existed at outward and inward, respectively. Waterborne polyurethane was prepared from poly(ethylene glycol) (PEG) /poly(propylene glycol) (PPG) copolymer, 4,4'-diphenylmethane diisocyanate(MDI), ethylene diamine as a chain extender, and three ionization agents, 1,3-propane sultone, sodium hydride and lithium hydroxide. PEG/PPG copolymer was used for suppressing the crystallinity of PEG and N-H bond was ionized for increasing the electrochemical stability of polyurethane. Low molecular weight poly(ethylene glycol) and poly(ethylene glycol dimethyl ether) (PEGDME) were used as plasticizers. DSC, FT-IR and $^1$H-NMR of the waterborne polyurethane were measured. Also, the ionic conductivity of solid polymer electrolytes based on waterborne polyurethane and various concentrations of low molecular weight poly(ethylene glycol) or PEGDME were measured by AC impedance.

  • PDF

초분자 네트워크를 이용한 열가역성 가교 탄성체 (Thermo-reversible Crosslinking Elastomer through Supramolecular Networks)

  • 배종우;오상택;김구니;백현종;김원호;최성신
    • Elastomers and Composites
    • /
    • 제45권3호
    • /
    • pp.165-169
    • /
    • 2010
  • 최근에 기존 고무의 장점인 유연성과 충전제에 의한 다양한 기능성과 열가소성 고무의 장점인 리싸이틀 및 성형의 용이성을 동시에 갖춘 초분자 네트워크형 열가역성 가교 탄성체가 소개되고 있다. 수소 결합과 이온 클러스터간의 결합력과 같은 열가역성 결합은 1990년부터 소개되었지만, 초분자 네트워크에서 가교 구조의 결합과 절단을 조절할 수 있는 기술이 시도된 것은 최근의 기술적 성과이다. 본 보문에서는 열가소성 탄성체의 용융 특성과 가교 탄성체의 보강 거동을 가지는 열가역성 가교 탄성체의 특징들을 정리하였다.

Preparation and Characterization of Nafion Composite Membranes Containing 1-ethyl-3-methylimidazolium Tetracyanoborate

  • Shin, Mun-Sik;Park, Jin-Soo
    • 전기화학회지
    • /
    • 제15권1호
    • /
    • pp.35-40
    • /
    • 2012
  • The composite membranes using Nafion as matrix and 1-ethyl-3-methylimidazolium tetracyanoborate (EMITCB) as ion-conducting medium in replacement of water were prepared and characterized. The amount of EMITCB in Nafion varied from 30 to 50wt%. The composite membranes are characterized by ion conductivity, thermogravitational analyses (TGA) and small-angle X-ray scattering (SAXS). The composite membranes containing EMITCB of 40wt% showed the maximum ionic conductivity which was ~0.0146 S $cm^{-1}$ at 423.15 K. It is inferred that the decrease in ionic conductivity of all the composite membranes might be due to the decomposition of a tetracyanoboric acid formed in the composite membranes. The results of SAXS indicated that the ionic clusters to conduct proton in the composite membranes were successfully formed. In accordance with the results of ionic conductivity as a function of a reciprocal temperature, SAXS showed a proportional decrease in scattering maximum $q_{max}$ as the amount of EMITCB increases in the composite membranes, which results in the increase in ionomer cluster size. The TGA showed no significant decomposition of the ionic liquid as well as the composite membranes in the range of operating temperature ($120-150^{\circ}C$) of high temperature proton exchange membrane fuel cells (HTPEMFC). As a result, EMITCB is able to play an important role in transferring proton in the composite membranes at elevated temperatures with no external humidification for proton exchange membrane fuel cells.

다관능기를 도입한 아이오노머 필름의 기체투과 특성 (Permeation Property of Ionomer Film with New Multifunctional Ionic Site)

  • 이보미;정삼봉;남상용
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.227-236
    • /
    • 2012
  • Ionomer is a thermoplastic that is composed of covalent bonds and ionic bonds. It is possible to use this material in processes such as injection molding or extrusion molding due to the material's high oil resistance, weatherproof characteristics, and shock resistance. In this study, a new ionomer having a multifunctional group was prepared by a stepwise neutralization system with the addition of acidic and salt additives. In step I, to increase the contents of the multifunctional group and the acid degree in ethylene acrylic acid (EAA), MGA was added to the ionomer resin (EAA). A new ionomer was prepared via the traditional preparation method of the ionic cross-linking process. In step II, metal salt was added to the mixture of EAA and MGA. The extrusion process was performed using a twin extruder (L/D = 40, size : ${\varphi}30$). Ionomer film was prepared for evaluation of gas permeability by using the compression molding process. The degree of neutralized and ionic cross-linked new ionomer was confirmed by FT-IR and XRD analysis. In order to estimate the neutralization of the new ionomer film, various properties such as gas permeation and mechanical properties were measured. The physical strength and anti-scratch property of the new ionomer were improved with increase of the neutralization degree. The gas barrier property of the new ionomer was improved through the introduction of an ionic site. Also, the ionic degree of cross-linking and gas barrier property of the ionomer membrane prepared by stepwise neutralization were increased.

전자선을 이용해 가교된 SPEEK 기본 물질로 하는 이온 교환막의 특성 분석 (The Characterization of Crosslinked SPEEK Based Ion Exchange Membranes Prepared by EB Irradiation Method)

  • 송주명;신준화;손준용;노영창
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.151-157
    • /
    • 2011
  • Crosslinked SPEEK/PVDF membrane were prepared by EB radiation method with various contents of PVDF. The prepared membranes were subjected to a comparative study of proton exchange membranes for fuel cell appreciations. The crosslinked SPEEK/PVDF membranes were characterized by using DMA, DSC and SAXS. The DMA data indicate that the ionic modulus values and cluster $T_g$ decrease with increasing PVDF content. Thus, it was suggested that the number of clustering in the crosslinked membranes can be reduced with increasing PVDF content. The DSC results were shown that the degree of crystalline of the membrane increased with increasing PVDF content. The morphology of the crosslinkied membranes was shown that with increasing PVDF content, the number of crystalline domain of the SPEEK/PVDF membranes increased but ionic aggregation of the membranes decreased. The water uptake behavior, ionic exchange capacity (IEC) and proton conductivity were decreased with increasing PVDF content. The overall findings suggest that the crosslinked membranes offer the possibility for improving the performance of PEMFC, provided that the membranes have thermal and hydration stability.

확장된 이온 클러스터를 갖는 음이온 교환막 개발을 위한 그래핀 옥사이드를 함유한 폴리(페닐렌 옥사이드) 기반 유·무기 복합막의 제조 및 특성분석 (Construction and Characterization of Poly (Phenylene Oxide)-Based Organic/Inorganic Composite Membranes Containing Graphene Oxide for the Development of an Anion Exchange Membrane with Extended Ion Cluster)

  • 주지영;유동진
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.524-533
    • /
    • 2021
  • In this study, a series of anion conductive organic/inorganic composite membranes with excellent ionic conductivity and chemical stability were prepared by introducing graphene oxide (GO) inorganic nanofiller into the quaternized poly(phenylen oxide (Q-PPO) polymer matrix. The fabricated organic/inorganic composite membranes showed higher ionic conductivity than the pristine membrane. In particular, Q-PPO/GO 0.7 showed the highest ionic conductivity value of 143.2 mS/cm at 90℃, which was 1.56 times higher than the pristine membrane Q-PPO (91.5 mS/cm). In addition, the organic/inorganic composite membrane showed superior dimensional stability and alkaline stability compared to the pristine membrane, and the physicochemical stability was improved as the content of inorganic fillers increased. Therefore, we suggest that the as-prepared organic/inorganic composite membranes are very promising materials for anion exchange membrane applications with high conductivity and alkaline stability.