Browse > Article

Thermo-reversible Crosslinking Elastomer through Supramolecular Networks  

Bae, Jong-Woo (Korea Institute of Footwear and Leathers Technology)
Oh, Sang-Taek (Korea Institute of Footwear and Leathers Technology)
Kim, Gu-Ni (Korea Institute of Footwear and Leathers Technology)
Baik, Hyen-Jong (Department of Chemical Engineering, Pusan National University)
Kim, Won-Ho (Department of Chemical Engineering, Pusan National University)
Choi, Sung-Seen (Department of Chemistry, Sejong University)
Publication Information
Elastomers and Composites / v.45, no.3, 2010 , pp. 165-169 More about this Journal
Abstract
Recently supramolecular network thermo-reversible crosslinking elastomer having flexibility, various functionality, and advantages of thermoplastic elastomer (TPE) such as recycle and easy processbility is introduced. Although thermo-reversible bonds such as hydrogen bond and ionic cluster is recognized as a common technology since 1990, control technology of bonding and dissociation of crosslink in supramolecular network is a recent technology. In this review, characteristics of thermo-reversible crosslinking elastomer having rheological properties of TPE and reinforcing behaviors of thermoset elastomer are summarized.
Keywords
elastomer; thermo-reversible; supramolecular; network; hydrogen bond; ionic cluster; crosslinking elastomer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. H. Hu and J. T. Lindt, "Monoesterification of Styrene-maleic anhydride Copolymers with Alcohols in Ethyl benzene", J. Polym. Sci. Part A Polym. Chem., 31, 691 (1993).
2 K. B. Wagener and L. P. Engle, "Thermally Reversible Polymer Linkages. 3. Covalently Cross-linked Poly(azlactone)", Macromolecules, 24, 6809 (1991).   DOI
3 G. Schmidt-Naake, H. G. Becker, and M. Klak, "Modification of Polymers in the Melt", Macromol. Symp., 163, 213 (2001).   DOI   ScienceOn
4 K. Chino, M. Ikawa, and J. Nator, U.S. patent 6746562 (2004).
5 H. Bai and B. Cheng, "Preparation of Thermoreversible Crosslinking Butyl rubber by Reaction of Brominated butyl rubber with 4-amino-uracil", China Synthetic Rubber Industry, 31, 195 (2008).
6 M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, "Thermoreversible Crosslinking of Maleated Ethylene/Propylene Rubber Using Ionic Interactions, Hydrogen Bonding and a Combination Thereof", Rubber Chemistry and Technology, 81, 96 (2008).   DOI   ScienceOn
7 M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, "Thermoreversible Cross-linking of Maleated ethylene/propylene Copolymers with Diamines and Amino-alcohols", Polymer, 49, 1239 (2008).   DOI   ScienceOn
8 K. Chino, M. Ikawa, and M. Ashiura, U.S. patent 6512051 (2003).
9 M. Bruch, D. Mäder, F. Bauers, T. Loontjens, and R. Mülhaupt, "Melt Modification of Poly(styrene-co-maleic anhydride) with Alcohols in the Presence of 1,3-oxazolines", J. Polym. Sci. Part A Polym. Chem., 38, 1222 (2000).   DOI   ScienceOn
10 K. Chino, "Development of Thermoreversible Crosslinking rubber using Supramolecular Hydrogen bonding Networks", Japan rubber society, 78, 106 (2005).   DOI   ScienceOn
11 E. Goiti, M. B. Huglin, and J. M. Rego, "Thermal Breakdown by the Retro Diels–Alder Reaction of Crosslinking in Poly[styrene- co-(furfuryl methacrylate)]", Macromol. Radik. Commun., 24, 692 (2003).   DOI   ScienceOn
12 D. Augustin, C. Leriche, and P. Poisson, U.S. patent 4617354 (1986).
13 J. F. Pazos, U.S. patent 3872057 (1975).
14 D. Joel and A. Hauser, "Thermal Dissociation of Urethanes Studied by FTIR Spectroscopy", Angew. Makromol. Chem., 217, 191 (1994).   DOI   ScienceOn
15 T. Hentschel and H. Munstedt, "Kinetics of the molar mass decrease in a Polyurethane melt: a Rheological study", Polymer, 42, 3195 (2001).   DOI   ScienceOn
16 R. Gheneim, C. Perez-Berumen, and A. Gandini, "Diels−Alder Reactions with Novel Polymeric Dienes and Dienophiles: Synthesis of Reversibly Cross-Linked Elastomers", Macromolecules, 35, 7246 (2002).   DOI   ScienceOn