Browse > Article
http://dx.doi.org/10.17702/jai.2015.16.3.95

A Study on Friction-induced Surface Fracture Behaviors of Carboxylic Acid Modified Styrenic Thermoplastic Elastomer as Additives  

Jeon, Jun-Ha (Korea Institute of Footwear & Leather Technology)
Park, Sang-Min (Korea Institute of Footwear & Leather Technology)
Lee, Jin- Hyok (Korea Institute of Footwear & Leather Technology)
Um, Gi-Yong (Korea Institute of Footwear & Leather Technology)
Publication Information
Journal of Adhesion and Interface / v.16, no.3, 2015 , pp. 95-100 More about this Journal
Abstract
In this work, we observed the effect of silica, zinc oxide, zinc ion coated silica on carboxylic acid modified styrenic thermoplastic elastomer (m-TPS) film for friction-induced surface fracture. m-TPS film added general silica showed poor mechanical properties, anti-abrasion and friction-induced surface fracture, caused by strong filler-filler interaction of silica. In case of m-TPS films added zinc oxide or zinc ion coated silica, mechanical properties, anti-abrasion and friction-induced surface fracture were improved due to forming ionic cluster between carboxylic acid group of m-TPS and zinc ion. Ionic cluster were confirmed by FT-IR analysis that observed zinc carboxylated group stretch peak at $1550{\sim}1650cm^{-1}$.
Keywords
TPS; Zinc ion; ionic cluster; Surface fracture; Marking characteristic;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. D. Shin, D. H. Kim, and G. N. Kim, Elast. Compos., 49, 191 (2014).   DOI
2 R. A. Weiss, J. A. Fitzerald, and D. Kim, Macromolecules, 24, 1071 (1991).   DOI
3 P. Antony and S. K. De, J. Macromol. Sci. Polim. Rev., C41, 41 (2001).
4 S. Bagrodia, G. L. Wilkes, and J. P. Kennedy, Polym. Eng. Sci., 26, 662 (1986).   DOI   ScienceOn
5 J. W. Bae, J. S. Kim, J. H. Lee, G. N. Kim, S. T. Oh, Y. H. Lee, and H. D. Kim, Asian J. Chem., 25, 5272 (2013).
6 J. H. Jeon, S. M. Park, G. Y. Um, and J. W. Bae, Journal of Adhesion and Interface, 14, 121 (2013).   DOI
7 B.A. Brozoski, M. M. Coleman, and P. C. Pianter, Macromolecules, 17, 230 (1984).   DOI
8 A. C. Yang, J. E. Ayala, and J. Campbell Scoot, J. Mater. Sci., 26, 662 (1986).
9 G. Holdend, E. T. Bishop, and N. R. Lege, J. Polym. Sci. C., 26, 37 (1969).
10 D. J. Meier, J. Polym. Sci. C., 26, 81 (1969).
11 P. S. Pillai, D. J. Livingston, and J. D. Strang, Rubber Chem. Technol., 45, 241 (1972).   DOI
12 K. C. Choi, E. k. Lee, S. Y. Choi, and S. J. Park, J. Korean Ind. Eng. Chem., 13, 87 (2002).
13 M. S. Jeon, Rubber Technology of Korea, 8, 129 (2007).
14 Y. Lee, J. Jeong, and J. Park, Elast. Compos., 45, 245 (2010).
15 E. J. Choi, J. H. Yoon, J. K. Jo, S. E. Shim, J. H. Yun, and I. Kim, Elast. Compos., 45, 170 (2010).
16 P. Sae-oui, C. Sirisinha, U. Thepsuwan, and K. Hattapanit, Eur. Polym. J., 42, 479 (2006).   DOI
17 Y. S. Choi, J. H. Lee, J. S. Kim, G. J. Kim, J. W. Bae, and C. Y. Park, Autumn Academic Symposium of Rubber Society of Korea, A-8 (2012).
18 J. H. Lee, J. W. Bae, J. S. Kim, Y. M. Yoon, and N. J. Jo, Elast. Compos., 48, 225 (2013).   DOI