• Title/Summary/Keyword: ion-beam

Search Result 1,653, Processing Time 0.02 seconds

ION BEAM APPLICATION

  • Baba Mamoru
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.319-326
    • /
    • 2006
  • A brief review is presented on the ion beam application in science and technology. ion beams are used very effectively in various fields of science and technology, on the basis of advance in accelerator technology and experimental techniques for ion beam utilization. Recent progress in this field is reviewed in terms of the direct ion beam utilization like ion beam analysis, and the utilization of neutrons as secondary particles.

A Study on Electro-Optical Characteristics of the Ion Beam Aligned TN Cell on the DLC Thin Film (DLC 박막을 이용한 Ion Beam 배향 TN 셀의 전기광학특성에 관한 연구)

  • 황정연;조용민;노순준;이대규;백홍구;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.726-730
    • /
    • 2002
  • Electro-optical (EO) performances of the ion beam (IB) aligned twisted-nematic (TN)-liquid crystal display (LCD) with ion beam exposure on the new diamond-like carbon (DLC) thin film surface were investigated. A good voltage-transmittance (V-T) curve of the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min was observed. Also, the fast response time of the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min can be achieved. Finally, the residual DC voltage of the ion beam aligned TN-LCD on the DLC thin film surface is almost the same as that of the rubbing aligned TN-LCD on a polyimide (Pl) surface.

Characteristics of Critical Pressure for a Beam Shape of the Anode Type ion Beam Source

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • We studied the critical pressure characteristics of an anode type ion beam source driven by both charge repulsion and diffusion mechanism. The critical pressure $P_{crit}$ of the diffusion type ion beam source was linearly decreased from 2.5 mTorr to 0.5 mTorr when the gas injection was varied in 3~10 sccm, while the $P_{crit}$ of the charge repulsion ion beam source was remained at 3.5 mTorr. At the gas injection of 10 sccm, the range of having normal beam shape in the charge repulsion ion beam source was about 6.4 times wider than that in the diffusion type ion beam source. An impurity of Fe 2p (KE = 776.68 eV) of 12.88 at. % was observed from the glass surface treated with the abnormal beam of the charge repulsion type ion beam source. The body temperature of the diffusion type ion beam source was observed to increase rapidly at the rate of $1.9^{\circ}C/min$ for 30 minutes and to vary slowly at the rate of $0.1^{\circ}C/min$ for 200 minutes for an abnormal beam and normal beam, respectively.

A Feasibility Study on the Cold Hollow Cathode Gas Ion Source for Multi-Aperture Focused Ion Beam System (다개구 이온빔 가공장치용 냉음극 방식의 가스 이온원의 가능성 평가에 관한 연구)

  • Choi, Sung-Chang;Kang, In-Cheol;Han, Jae-Kil;Kim, Tae-Gon;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.383-388
    • /
    • 2011
  • The cold hollow cathode gas ion source is under development for multi aperture focused ion beam (FIB) system. In this paper, we describe the cold hollow cathode ion source design and the general ion source performance using Ar gas. The glow discharge characteristics and the ion beam current density at various operation conditions are investigated. This ion source can generate maximum ion beam current density of approximately 120 mA/$cm^2$ at ion beam potential of 10 kV. In order to effectively transport the energetic ions generated from the ion source to the multi-aperture focused ion beam(FIB) system, the einzel lens system for ion beam focusing is designed and evaluated. The ions ejected from the ion source can be forced to move near parallel to the beam axis by adjusting the potentials of the einzel lenses.

Electro-optical Characteristics of Twisted Nematic(TN)-LCD using New Ion Beam Equipment (새로운 이온빔장치를 사용한 Twisted Nematic-LCD의 전기광학특성)

  • Kim Sang-Hoon;Hwang Jeoung-Yeon;Jang Mi-Hye;Kim Gwi-Yeol;Seo Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.547-551
    • /
    • 2006
  • We studied liquid crystal (LC) alignment with ion beam (IB) on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the polyimide surface using obliquely ion beam (IB) exposure with new IB type equipment. A good uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the polyimide surface was observed. In addition, it can be achieved the good EO properties of the ion-beam-aligned TN-LCD on polyimide surface. Also, the EO characteristics of the ion-beam-aligned TN-LCD on a polyimide (PI) surface with ion beam exposure using new type IB equipment is same or more superior than ion-beam-aligned TN-LCD on a polyimide (PI) surface with ion beam exposure using Kaufman-type Ar ion gun.

Study of ion beam shaping of an anode-type ion source coupled with a Whenelt mask

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.70-74
    • /
    • 2018
  • We fabricated an anode-type ion source driven by a charge repulsion mechanism and investigated its beam shape controlled by a Whenelt mask integrated at the front face of the source. The ion beam shape was observed to vary by changing the geometry of the Whenelt mask. As the angle of inclination of the Whenelt mask was varied from $40^{\circ}$ to $60^{\circ}$, the etched area at a thin film was reduced from 20 mm to 7.5 mm at the working distance of 286 mm, and the light transmittance through the etched surface was increased from 78% to 80%, respectively. In addition, for the step height difference, ${\Delta}$ between the inner mask and the outer mask of ${\Delta}=0$, -1 mm, and +1 mm, we observed the ion beam shape was formed to be collimated, diverged, and focused, respectively. The focal length of the focused beam was 269 mm. We approved experimentally a simple way of controlling the electric field of the ion beam by changing the geometry of the Whenelt mask such that the initial direction of the ion beam in the plasma region was manipulated effectively.

Alignment Effects for Nematic Liquid Crystal on a New Diamond-like Carbon Layer

  • Seo, Dae-Shik;Jo, Yong-Min;Hwang, Jeoung-Yeon;Lee, Sang-Keuk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • Alignment effects for nematic liquid crystal (NLC) and electro-optical (EO) characteristics of the ion beam (IB) aligned twisted nematic (TN)-liquid crystal display (LCD) with oblique ion beam exposure on the diamond-like carbon (DLC) thin film surface were studied. A high pretilt angle of 3.5$^{\circ}$ in NLC by ion beam exposure on the DLC thin film layer can be measured. An excellent voltage-transmittance (V-T) curve of the ion beam aligned TN-LCD was observed with oblique ion beam exposure on the DLC thin film surface for 1 min. Also, a faster response time for the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min can be achieved.

EO Performances for Ion-beam Aligned TN-LCD on a DLC Thin Film Layer

  • Jo, Yong-Min;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Lee, Sang-Keuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.118-120
    • /
    • 2002
  • Electro-optical (EO) characteristics of the ion beam (IB) aligned twisted nematic (TN)-liquid crystal display (LCD) with oblique ion beam exposure on the diamond-like carbon (DLC) thin film surface were studied. An excellent voltage-transmittance (V-T) curve of the ion beam aligned IN-LCD was observed with oblique ion beam exposure on the DLC thin film surface for I min. Also, a faster response time for the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min can be achieved.

  • PDF

Generation of Water Droplet Ion Beam for ToF-SIMS Analysis

  • Myoung Choul Choi;Ji Young Baek;Aram Hong;Jae Yeong Eo;Chang Min Choi
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2023
  • The increasing demand for two-dimensional imaging analysis using optical or electronic microscopic techniques has led to an increase in the use of simple one-dimensional and two-dimensional mass spectrometry imaging. Among these imaging methods, secondary-ion mass spectrometry (SIMS) has the best spatial resolution using a primary ion beam with a relatively insignificant beam diameter. Until recently, SIMS, which uses high-energy primary ion beams, has not been used to analyze molecules. However, owing to the development of cluster ion beams, it has been actively used to analyze various organic molecules from the surface. Researchers and commercial SIMS companies are developing cluster ion beams to analyze biological samples, including amino acids, peptides, and proteins. In this study, a water droplet ion beam for surface analysis was realized. Water droplets ions were generated via electrospraying in a vacuum without desolvation. The generated ions were accelerated at an energy of 10 keV and collided with the target sample, and secondary ion mass spectra were obtained for the generated ions using ToF-SIMS. Thus, the proposed water droplet ion-beam device showed potential applicability as a primary ion beam in SIMS.

Development of Ion Beam Monte Carlo Simulation and Analysis of Focused Ion Beam Processing (이온빔 몬테 카를로 시물레이션 프로그램 개발 및 집속 이온빔 공정 해석)

  • Kim, Heung-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.479-486
    • /
    • 2012
  • Two of fundamental approaches that can be used to understand ion-solid interaction are Monte Carlo (MC) and Molecular Dynamic (MD) simulations. For the simplicity of simulation Monte Carlo simulation method is widely preferred. In this paper, basic consideration and algorithm of Monte Carlo simulation will be presented as well as simulation results. Sputtering caused by incident ion beam will be discussed with distribution of sputtered particles and their energy distributions. Redeposition of sputtered particles that are experienced refraction at the substrate-vacuum interface additionally presented. In addition, reflection of incident ions with reflection coefficient will be presented together with spatial and energy distributions. This Monte Carlo simulation will be useful in simulating and describing ion beam related processes such as Ion beam induced deposition/etching process, local nano-scale distribution of focused ion beam implanted ions, and ion microscope imaging process etc.