Browse > Article
http://dx.doi.org/10.5757/ASCT.2018.27.4.65

Characteristics of Critical Pressure for a Beam Shape of the Anode Type ion Beam Source  

Huh, Yunsung (R&D Center, Finesolution Co., Ltd.)
Hwang, Yunseok (R&D Center, Finesolution Co., Ltd.)
Kim, Jeha (Department of Energy Convergence Engineering, Cheongju University)
Publication Information
Applied Science and Convergence Technology / v.27, no.4, 2018 , pp. 65-69 More about this Journal
Abstract
We studied the critical pressure characteristics of an anode type ion beam source driven by both charge repulsion and diffusion mechanism. The critical pressure $P_{crit}$ of the diffusion type ion beam source was linearly decreased from 2.5 mTorr to 0.5 mTorr when the gas injection was varied in 3~10 sccm, while the $P_{crit}$ of the charge repulsion ion beam source was remained at 3.5 mTorr. At the gas injection of 10 sccm, the range of having normal beam shape in the charge repulsion ion beam source was about 6.4 times wider than that in the diffusion type ion beam source. An impurity of Fe 2p (KE = 776.68 eV) of 12.88 at. % was observed from the glass surface treated with the abnormal beam of the charge repulsion type ion beam source. The body temperature of the diffusion type ion beam source was observed to increase rapidly at the rate of $1.9^{\circ}C/min$ for 30 minutes and to vary slowly at the rate of $0.1^{\circ}C/min$ for 200 minutes for an abnormal beam and normal beam, respectively.
Keywords
Anode type ion beam source; Critical pressure; Diffusion mechanism; Charge repulsion mechanism; Ion beam shape;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J.A. Thornton, J. Vac. Sci. Technol., 11, 666 (1974).   DOI
2 K. Guenther, SPIE, 1324, 2 (1990).
3 B. Movchan and A. Demchishin, Fiz. Met. Metalloved, 28, 653 (1969).
4 Y.H. Ham, D.A. Shutov, K.H. Baek, L.M. Do, K.S. Kim, C.W. Lee, and K. H. Kwon, Thin Solid Films, 518, 6378 (2010).   DOI
5 S.K. Koh, S.C. Choi, S.Han, J. Cho, W.K. Choi, H.-J. Jung, and H.H. Hur, Key Eng. Materials, 137, 107 (1998).
6 H. Schonhorn and R.H. Hansen, J. Appl. Polym. Sci., 11, 1461 (1967).   DOI
7 S. Kim, J. Lee, and C.K. Hwangbo, J. Kor. Vac. Soc., 11, 141 (2002).
8 S. Kim, J. Lee, and C.K. Hwangbo, Thin Solid Films, 475, 155 (2005).   DOI
9 J. Park, B. Park, S. Kang, K.K. Lee, D. Lee, and K. Lee, J. Kor. Inst. Surf. Eng., 41, 88 (2008).   DOI
10 H.R. Kaufman and M.E. Harper, "2004 SPIE Proceeding", Vol. 5527, Aug. 4, (2004).
11 M.L. Fulton, SPIE, 2253, 374 (2013).
12 E.S. Cho and S.J. Kwon, J. Kor. Vac. Soc., 22, 26 (2013).   DOI
13 H.W. Choi, D.H. Park, J.H. Kim, W.K Choi, Y.J. Sohn, B.S. Song, J. Cho, and Y.S. Kim, J. Kor. Vac. Soc., 16, 79 (2007).   DOI
14 S. Lee and D.-G. Kim, Appl. Sci. Conv. Technol., 24, 162 (2015).
15 D.R. Wheelers and S.V. Pepper, J. Vac. Sci. Technol., 20, 443 (1982).
16 E.S. Cho and S.J. Kwon, J. Kor. Vac. Soc., 22, 26 (2013).   DOI
17 Finesolution, Patent No. KR10-1478216, Dec. 24 (2014).
18 Finesolution, Patent No. US9,269,535 B1, Feb. 23 (2016).
19 D. Depla1, S. Mahieu1, and J. E. Greene, "Sputter Deposition Processes", pp. 261-265, William Andrew Publishing (2010).
20 Y. Huh, Y. Hwang, and J. Kim, Appl. Sci. Conv. Technol., 27, 47 (2018).