• 제목/요약/키워드: ion irradiation

검색결과 453건 처리시간 0.033초

앙성자 및 감마선을 처리한 유채 $M_2$ 세대의 소포자로부터 반수체 배발생 (Production of Haploids from Proton Ion and Gamma-Ray Irradiation Treated $M_2$ Generation of Isolated Microspores in Brassica napus L. ssp. oleifera)

  • 김광수;이미양;장영석;박윤정;방진기
    • 한국작물학회지
    • /
    • 제53권2호
    • /
    • pp.150-155
    • /
    • 2008
  • 양성자와 감마선 조사한 추파형 유채 $M_2$세대의 화뢰의 소포자 배발생에 대해 조사하였다. 세 가지 유채품종 '한라', '내한'과 '탐미' 유채종자를 각각 400 Gy와 600 Gy의 양성자와 감마선으로 전처리 하였다. 일부 종의 양성자와 감마선 조사구에서 배발생이 증가되었고 대조구보다 높았다. 품종별로는 '내한'유채가 배발생 빈도가 가장 높았고 '탐미' 유채가 가장 낮았다. 드물게 배상체로부터 바로 소식물체가 형성되었고 대부분은 비정상적으로 multilobe가 형성되었다. 배상체로부터 식물체가 성공적으로 재분화 되었고 화분에 순화되었다.

이온빔의 공정변수에 따른 Cu/Polyimide 박막의 접착력향상에 관한 연구 (A Study on the Improvement of Adhesion according to the Process Variables of Ion Beam in the Cu/Polyimide Thin Film)

  • 신윤학;김명한;최재하
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.458-464
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer surfaces by ion beam irradiation and rf plasma is commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $N_2^+$ ion beam irradiation conditions for pretreatment. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the 90° peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $N_2^+$ ion beam irradiation energy at the fixed metal-layer thickness.

Influences of the Irradiation of Intense Pulsed ion Beam (IPIB) on the Surface of Ni$_3$Al Base Alloy IC6

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Han, B.H.;Wang, Y.G.;Xue, J.M.;Zhang, H.T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권2호
    • /
    • pp.92-96
    • /
    • 2002
  • In this paper, we treated the Ni$_3$Al based alloy samples with intense pulsed ion beams (IPIB) at the beam parameters of 250KV acceleration voltage, 100 - 200 A/cm$^2$ current density and 60 u pulse duration. We simulated the thermal-mechanical process near the surface of Ni$_3$Al based alloy with our STEIPIB codes. The surface morphology and the cross-section microstructures of samples were observed with SEM, the composition of the sample surface layer was determined by X-ray Energy Dispersive Spectrometry (XEDS) and the microstructure on the surface was observed by Transmission Electron Microscope (TEM). The results show that heating rate increases with the current density of IPIB and cooling rate reached highest value less than 150 A/cm$^2$. The irradiation of IPIB induced the segregation of Mo and adequate beam parameter can improve anti-oxidation properly of IC6 alloy. Some craters come from extraneous debris and liquid droplets, and some maybe due to the melting of the intersection region of interphase. Increasing the pulse number enlarges average size of craters and decreases number density of craters.

  • PDF

$Ga^+$ 이온 빔 조사량에 따른 자기 조립 단분자막의 습식에칭 특성 (Effect of $Ga^+$ Ion Beam Irradiation On the Wet Etching Characteristic of Self-Assembled Monolayer)

  • 노동선;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.326-329
    • /
    • 2005
  • As a flexible method to fabricate sub-micrometer patterns, Focused Ion Beam (FIB) instrument and Self-Assembled Monolayer (SAM) resist are introduced in this work. FIB instrument is known to be a very precise processing machine that is able to fabricate micro-scale structures or patterns, and SAM is known as a good etch resistance resist material. If SAM is applied as a resist in FIB processing fur fabricating nano-scale patterns, there will be much benefit. For instance, low energy ion beam is only needed for machining SAM material selectively, since ultra thin SAM is very sensitive to $Ga^+$ ion beam irradiation. Also, minimized beam spot radius (sub-tens nanometer) can be applied to FIB processing. With the ultimate goal of optimizing nano-scale pattern fabrication process, interaction between SAM coated specimen and $Ga^+$ ion dose during FIB processing was observed. From the experimental results, adequate ion dose for machining SAM material was identified.

  • PDF

Simulation of the irradiation effect on hardness of Chinese HTGR A508-3 steels with CPFEM

  • Nie, Junfeng;Lin, Pandong;Liu, Yunpeng;Zhang, Haiquan;Wang, Xin
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1970-1977
    • /
    • 2019
  • Understanding the irradiation hardening effect of structural steels under various irradiation conditions plays an important role in developing advanced nuclear systems. Such being the case, a crystal plasticity model for body-centered cubic (BCC) crystal based on the density of dislocations and irradiation defects is summarized and numerically implemented in this paper. Based on this model, nano-indentation hardness of Chinese A508-3 steels with ion irradiation is calculated. Very good agreement is observed between simulation and experimental data of several different irradiation doses subjected to various operating temperatures, from which, it can be concluded that indentation hardness increases with increasing irradiation dose at both room temperature and high temperature. Consequently, the validity of this model has been proved properly, and furthermore, the model established in this paper could guide the study of irradiation hardening effect and temperature effect to some extent.

Titanium Aluminium Nitride 후막의 전자-빔 조사 효과 (Effect of Electron Irradiation on the Titanium Aluminium Nitride Thick Films)

  • 최수현;허성보;공영민;김대일
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.280-284
    • /
    • 2020
  • Electron beam irradiation is widely used as a type of surface modification technology to advance surface properties. In this study, the effect of electron beam irradiation on properties, such as surface hardness, wear resistance, roughness, and critical load of Titanium Aluminium nitride (TiAlN) films was investigated. TiAlN films were deposited on the SKD-61 substrate by using cathode arc ion plating. After deposition, the films were bombarded with intense electron beam for 10 minutes. The surface hardness was increased up to 4520 HV at electron irradiation energy of 1500 eV. In addition, surface root mean square (RMS) roughness of the films irradiated at 1500 eV shows the lowest roughness of 484 nm in this study.

이온빔 조사에 의한 기능성 고분자 필름의 표면 특성 (Surface Characteristics of Functional Polymer Film by Ion Beam Irradiation)

  • 김영준;홍성민;노용오
    • 폴리머
    • /
    • 제37권4호
    • /
    • pp.431-436
    • /
    • 2013
  • 폴리카보네이트(PC) 필름에 이온 조사량과 에너지를 변화시켜 가면서 여러 종류의 이온을 조사하였다. 광 투과 특성과 화학적 조성은 각각 UV-VIS와 FTIR(ATR) spectroscopy를 이용해서 얻었다. 400 nm에서 이러한 UV-A 차단율은 에너지와 이온 조사량에 따라서 10에서 100%까지 자유롭게 조절할 수 있었다. 이온 조사된 PC 필름의 표면 전기 저항은 $10^6-10^{13}{\Omega}/cm^2$까지 전도도의 변화를 보인다. 이온 조사된 필름의 접촉각은 모재 필름의 접촉각보다 감소하였다. 폴리머 표면 형태는 atomic force microscopy(AFM)에 의해서 관찰되었다. 예상대로 더 무거운 Xe 이온 조사 후에 폴리머 필름의 파괴가 더 많았다. 그러나 Ar 이온 조사 후에 폴리머 필름의 표면 거칠기가 더 나타났다. 이것은 Xe 이온 조사의 경우 사용가능한 자유체적의 감소와 관련되어 폴리머 필름 표면층의 강력한 채움으로써 설명될 수 있다.

Room Temperature Luminescence from ion Beam or Atmospheric Pressure Plasma Treated SrTiO3

  • 송진호;석재권;여창수;이관호;송종한;신상원;최진문;조만호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.530-531
    • /
    • 2013
  • 3 MeV protonirradiated SrTiO3 (STO) single crystal exhibits a blue and green mixed luminescence. However, the same proton irradiated STO deposited with very thin Pt layer does not show any luminescence. This Pt layer involved in preventing the damage caused by arcingthat comes from tens of kV surface voltage build-up due to secondary electron induced charge up at the surface of insulator during ion beam irradiation. It implies that luminescence of ion irradiated STO originated from the modified STO surface layer caused by arcing rather than direct ion beam irradiation effect. Atmospheric pressure plasma, a simple and cost-effective method, treated STO also exhibits the same kind of blue and green mixed luminescence as the ion beam treated STO, because this plasma also creates a surface damage layer by arcing.

  • PDF

Room-Temperature Luminescence from Ion Beam or Atmospheric Pressure Plasma-Treated SrTiO3

  • Song, J.H.;Choi, J.M.;Cho, M.H.;Choi, E.J.;Kim, J.;Song, J.H.
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.261-264
    • /
    • 2014
  • $SrTiO_3$ (STO) single crystal irradiated with a 3-MeV proton beam exhibits blue and green mixed luminescence. However, the same proton beam when used to irradiate STO with a very thin layer of deposited Pt does not show any luminescence. This Pt layer prevents any damage which may otherwise be caused by arcing, which stems from the accumulated surface voltage of tens of kV due to the charge induced by secondary electrons on the surface of the insulator during the ion beam irradiation process. Hence, the luminescence of ion-irradiated STO originates from the modification of the STO surface layer caused by arcing rather than from any direct ion beam irradiation effect. STO treated with atmospheric-pressure plasma, a simple and cost-effective method, also exhibits the same type of blue and green mixed luminescence as STO treated with an ion beam, as the plasma also creates a layer of surface damage due to arcing.