DOI QR코드

DOI QR Code

Effect of Electron Irradiation on the Titanium Aluminium Nitride Thick Films

Titanium Aluminium Nitride 후막의 전자-빔 조사 효과

  • Choe, Su-Hyeon (School of Materials Science and Engineering, University of Ulsan) ;
  • Heo, Sung-Bo (Functional Components & Materials Group, Korea Institute of Industrial Technology) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • 최수현 (울산대학교 첨단소재공학부) ;
  • 허성보 (한국생산기술연구원, 첨단하이브리드생산기술센터) ;
  • 공영민 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2020.10.12
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

Electron beam irradiation is widely used as a type of surface modification technology to advance surface properties. In this study, the effect of electron beam irradiation on properties, such as surface hardness, wear resistance, roughness, and critical load of Titanium Aluminium nitride (TiAlN) films was investigated. TiAlN films were deposited on the SKD-61 substrate by using cathode arc ion plating. After deposition, the films were bombarded with intense electron beam for 10 minutes. The surface hardness was increased up to 4520 HV at electron irradiation energy of 1500 eV. In addition, surface root mean square (RMS) roughness of the films irradiated at 1500 eV shows the lowest roughness of 484 nm in this study.

Keywords

References

  1. H. Ju, S. He, L. Yu, I. Asempah, J. Xu, Surf. Coat. Technol. 317 (2017) 158-165. https://doi.org/10.1016/j.surfcoat.2017.03.058
  2. T. Morita, K. Inoue, X. Ding, Y. Usui, M. Ikenaga, Mater. Sci. Eng. A 661 (2016) 105-114. https://doi.org/10.1016/j.msea.2016.03.015
  3. H. Ju, J. Xu, Appl. Surf. Sci. 355 (2015) 878-883. https://doi.org/10.1016/j.apsusc.2015.07.114
  4. R. Lan, Z. Ma, C. Wang, G. Lu, Y. Yuan, C. Shi, Diam. Relat. Mater. 98 (2019) 107473. https://doi.org/10.1016/j.diamond.2019.107473
  5. Y. S. Kim, J. Choi, Y. park, S. H. Choe, B. C. Cha1, Y. Kong, D. Kim, Korean J. Met. Mater. 58 (2020) 190. https://doi.org/10.3365/kjmm.2020.58.3.190
  6. T. A. Krylova, Yu. A. Chumakov, Mater. Lett. 274 (2020) 128022. https://doi.org/10.1016/j.matlet.2020.128022
  7. Y. S. Kim, D. W. Kim, I. S. Lee, S. Yoon, D. Kim, S. Jun B. C. Cha, Coatings 10 (2020) 604. https://doi.org/10.3390/coatings10070604
  8. I. W. Park, S. R. Choi, K. H Kim, J. Kor. Inst. Surf. Eng, 36 (2003) 109-115.
  9. T. Y. Eom, Y. Song, S. Choi, J. Choi, S. B. Heo, J. H. Kim, D. Kim, J. Korean Soc. Heat Treat. 30 (2017) 164. https://doi.org/10.12656/jksht.2017.30.4.164
  10. C. H. Shin, Y. J. Sung, S. Y. Lym, G. W. Shiun, C. W. Jeong, S. K. Kim, J. H. Kim, Y. Z. You, D. Kim, J. Korean Soc. Heat Treat. 23 (2010) 29. https://doi.org/10.12656/JKSHT.2010.23.1.029
  11. W. Jiang, L. P. Wang, X. F. Wang, Nucl. Instrum. Method Phys. Res. B, 436 (2018) 63-67. https://doi.org/10.1016/j.nimb.2018.09.003