• Title/Summary/Keyword: ion composition

Search Result 796, Processing Time 0.027 seconds

Adsorptive Removal Properties of Heavy Metal Ions By Soils from the Upper Banbyun Stream (반변천 상류 주변 토양의 중금속 이온 흡착제거 특성)

  • Kim, Younjung;Hwang, Haeyeon;Kim, Yunhoi;Ryu, Sanghoon;Baek, Seungcheol;Seo, Eulwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.5-9
    • /
    • 2007
  • This study carried out to investigate the removal capacity of heavy metals such as Cu (II), Zn (II) and Cd (II) dissolved in aqueous solution in the soils collected from Hyeon-Dong (HD), San-seong (SS), Keum-chon (KC) and Keum-Hac (KH) located in the upper Banbyun stream. The pH of all the soils was weak alkali such as 8.8 9.2. According to the analysis of chemical composition of the soils, the amount of $SiO_2$, $AlO_2$ and CaO were similar in all tested soils. However, the amount of $K_2O$, $FeO_3$ and MgO were different from each soil. The XRD measurement with these soils showed that quartz and feldspar were presented in all tested soils, and the distribution of kaoline, illite, montmorillonite, vermiculite and calcite were different from each soil. The results of the removal capacity of heavy metals indicated that all the soils had more than 98% of the removal efficiency of Cu (II), Zn (II) and Cd (II), and among the heavy metals, Cu (II) was removed the most effectively. These results suggested that the soils collected from the upper Banbyun stream have the high removal capacity of heavy metals, and these soils could be used for the banking a river around the abandoned mine area, containing the higher concentrations of heavy metals than the usual stream.

  • PDF

Synthesis, Structure and Electrical Properties of $Sr_1-_xY_xMnO_3$ System ($Sr_1-_xY_xMnO_3$의 합성 및 조성에 따른 결정구조와 전기적 성질변화)

  • Park, So Jeong;Kim, Seong Jin
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.785-791
    • /
    • 1994
  • The $Sr_1-_xY_xMnO_3$ (x = 0.0∼1.0) system was synthesized using amorphous citrate process. The stability of various structures and the electronic transport properties of this system were investigated. X-ray diffraction study indicated that the $Sr_1-_xY_xMnO_3$ system has three different structures depending on composition, namely, 4L-hexagonal perovskite (when x is less than 0.3), pseudocubic perovskite (when x is 0.3∼0.7), and hexagonal nonperovskite (when x is larger than 0.7) structures. The structural changes and electronic properties were interpreted based on two factors, i.e., the size of cations and the oxidation state of manganese ion. When the concentration of Y substitution exceeds 30%, the Mn-Mn repulsive interaction dominates over intermetallic attraction, and thus structure changes to pseudocubic perovskite. In perovskite phase the unit cell dimensions increases with increasing $Mn^{3+}$ ions due to yttrium substitution. The band gap of $Sr_{0.9}Y_{0.1}MnO_3$ is greater than that of $Sr_{0.5}Y_{0.5}MnO_3$. The greater band gap of $Sr_{0.9}Y_{0.1}MnO_3$ indicates that the 4L-hexagonal structure is more stabilized than cubic perovskite due to the Mn-Mn bond.

  • PDF

Synthesis, Physico-Chemical and Biological Properties of Complexes of Cobalt(II) Derived from Hydrazones of Isonicotinic Acid Hydrazide (Isonicotinic Acid Hydrazide의 Hydrazone으로부터 유도된 코발트(II) 착물의 합성, 물리-화학 및 생물학적 성질)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • Hydrazones of isonicotinic acid hydrazide, viz., N-isonicotinamido-furfuralaldimine (INH-FFL), N-isonicotnamido-cinnamalidine (INH-CIN) and N-isonicotnamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) were prepared by reacting isonicotinic acid hydrazide with respective aromatic aldehydes, i.e., furfural, cinnamaldehyde or 3,4,5-trimethoxy-benzaldehyde. A new series of fifteen complexes of cobalt(II) with these new hydrazones, INH-FFL, INH-CIN and INH-TMB, were synthesized by their reaction with cobalt(II) salts. The infrared spectral data reveal that hydrazone ligands behave as a bidentate ligand with N, O donor sequence towards the $Co^{2+}$ ion. The complexes were characterized on the basis of elemental analysis, magnetic susceptibility, conductivity, infrared and electronic spectral measurements. Analytical data reveal that the complexes have general composition [Co($L)_2X_2]\;and\;[Co(L)_3](ClO_4)_2$ where L= INH-FFL, INH-CIN or INH-TMB and X = $Cl^-,{NO_3}-,\;NCS^-\;or\;CH_3COO^-.$ The thermal behaviour of the complexes were studied using thermogravimetrictechnique. Electronic spectral results and magnetic susceptibility measurements are consistent with the adoption of a six-coordinate geometry for the cobalt(II) chelates. The antimicrobial properties of cobalt(II) complexes and few standard drugs have revealed that the complexes have very moderate antibacterial activities.

Microwave Dielectric Properties of (Pb0.4Ca0.6)[(Fe1/2Nb1/2)1-x(Mg1/3Nb2/3)x]O3 Ceramics

  • Kim, Eung-Soo;Han, Ki-Moon;Kim, Jong-Hee;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.323-327
    • /
    • 2003
  • Microwave dielectric properties of (P $b_{0.4}$C $a_{0.6}$)[($Fe_{\frac{1}{2}}$N $b_{\frac{1}{2}}$)$_{1-x}$ (M $g_{1}$ 3/N $b_{2}$ 3/)x] $O_3$ (PCFMN) ceramics were investigated as a function of (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$ content (0.1$\leq$x$\leq$0.8). A single perovskite phase with the cubic structure was obtained through the given composition range. The unit cell volume was increased with (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$, due to the larger average ionic size of (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$ than that of ($Fe_{\frac{1}{2}}$N $b_{\frac{1}{2}}$)$^{4+}$ for B-site ion. Dielectric constant (K) and Temperature Coefficient of Resonant Frequency(TCF) of PCFMN ceramics were dependent on (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$ content due to the decrease of ionic polarizability and B-site bond valence, respectively. Qf value was decreased with (M $g_{1}$ 3/N $b_{2}$ 3/)$^{4+}$ content due to the decrease of grain size. Typically, K of 73.56, Qf of 5,074 GHz and TCF of -6.45 ppm/$^{\circ}C$ were obtained for the specimens with x=0.4 sintered at 125$0^{\circ}C$ for 3 h.125$0^{\circ}C$ for 3 h.

A Study on Surface Characteristics and Stability of Implants Treated with Anodic Oxidation and Fluoride Incorporation (양극 산화와 불소 화합물로 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Lim, Jae-Bin;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.349-365
    • /
    • 2006
  • State of problem : A number of investigation about increase of surface area via various surface treatments and modification of surface constituent have been carried out. Purpose : The surface characteristics and stability of implants treated with anodic oxidation, fluoride ion incorporation, and groups treated with both methods were evaluated. Material and method : Specimens were divided into six groups, group 1 was the control group with machined surface implants, groups 2 and 3 were anodic oxidized implants (group 2 was treated with 1M $H_2SO_4$ and 185V, group 3 was treated with 0.25M $H_2SO_4$ and $H_3PO_4$ and 300V). Groups 4, 5 and 6 were treated with fluoride. Group 4 was machined implants treated with 0.1% HF, and groups 5 and 6 were groups 2 and 3 treated with 10% NaF respectively. Using variable methods, implant surface characteristics were observed, and the implant stability was evaluated on rabbit tibia at 0, 4, 8 and 12 weeks. Result : 1. In comparison of the surface characteristics of anodic oxidized groups, group 2 displayed delicate and uniform oxidation layer with small pore size containing Ti, C, O and showed mainly rutile, but group 3 displayed large pore size and irregular oxidation layer with many crators. 2. In comparison of the surface characteristics of fluoride treated groups 4, 5, 6 and non-fluoride treated groups 1, 2, 3, the configurations were similar but the fluoride treated groups displayed rougher surfaces and composition analysis revealed fluoride in groups 4, 5, 6. 3. The fluoride incorporated anodic oxidized groups showed the highest resonance frequency values and removal torque values, and the values decreased in the order of anodic oxidized groups, fluoride treated group, control group. 4. According to implant stability tests, group 2 and 3 showed significantly higher values than the control group (P<.05). The fluoride treated groups showed relatively higher values than the non fluoride treated groups and there were significant difference between group 4 and group 1 (P<.05). Conclusion : From the results above, it can be considered that the anodic oxidation method is an effective method to increase initial bone stability and osseointegration and fluoride containing implant surfaces enhance new bone formation. Implants containing both of these methods should increase osseointegration, and reduce the healing period.

A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature: As an Anode Media of SO-DCFC (SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구)

  • Yu, Jun Ho;Kang, Kyungtae;Hwang, Jun Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.677-685
    • /
    • 2014
  • A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for $Li_2CO_3$, $K_2CO_3$, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it.

Geochronological and Geochemical Studies for Triassic Plutons from the Wolhyeonri Complex in the Hongseong Area, Korea (홍성지역 월현리 복합체 내에 분포하는 트라이아스기 심성암류의 지질연대학 및 지구화학적 연구)

  • Oh, Jae-Ho;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.391-409
    • /
    • 2013
  • The Hongseong area of the southwestern Gyeonggi massif is considered to be part of suture zone that is tectonically correlated with the Qinling-Dabie-Sulu belt of China in terms of the preservation of collisional evidences during Triassic in age. The Wolhyeonri complex, preserved at the center of the Hongseong area, consists mainly of Neoproterozoic orthogneisses and Middle Paleozoic intermediate- to high-grade metamorphic schists, orthogneisses and mafic metavolcanics. The area includes various Middle to Late Triassic intrusives (e.g. dyke or stock). They are mainly monzonite and aplite with small intrusions of monzodiorit, syenite and diorite in composition. The SHRIMP U-Pb zircon ages yield 237 Ma to 222 Ma. The geochemistry of the studied Triassic intrusives show similar subuction- or arc-type signatures having Ta-Nb troughs, depletion of P and Ti, and enrichment of LILEs (large ion lithophile elements). In addition, the Triassic plutons in the Hongseong area, including those from this study, mostly possess high-K calc-alkaline to shoshonitic tectonic affinity. These results could be tectonically correlated to the post-collisional magmatic event following the Triassic collision between the North and South China blocks in China. Therefore, the Triassic plutons in the Hongseong area offer an important insight into the Triassic geodynamic history of the NE Asian region.

Effects of Sulfur on Yield and Nutritive Qualities of Soybean (대두종실(大豆種實)의 수량(收量)과 영양적(營養的) 품질(品質)에 미치는 황(黃) 시용(施用)의 효과(效果))

  • Lim, Sun-Uk;Eom, Joo-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.356-362
    • /
    • 1984
  • A field experiment was carried out to investigate the sulfur effects on yield, growth and nutritive qualities of soybean in the different fertilizer application methods. Ammonium sulfate and super-phosphate were applied to the soil with levels of 0, 2, 4, and 6Kg S/10a and potassium sulfate, ammonium sulfate and thiourea were applied by foliar application with 2KgS/10a. The results obtained were as follows; 1. Grain and dry matter yield of soybean were increased by the increase of sulfur application and sulfur application showed positive effect on yield components. 2. Sulfur application increased the sulfur content and decreased N/S ratio in grain of soybean. 3. Protein content was increased by raising sulfur application up to 4Kg S/10a. Sulfur application influenced on amino acid composition of soybean protein. Cysteine and methionine contents were increased by sulfur application. 4. Lipid content of soybean grain and inorganic ion absorption by soybean plant were not influenced significantly by sulfur application. 5. In application effects, there was no significant difference among sulfur fertilizers, but foliar application was more effective than soil application.

  • PDF

Evaluation of Bioactivity of Titanium Implant Treated with H2O2/HCl Solution (H2O2/HCl 처리한 Ti 임플란트의 생체활성 평가)

  • Yue J. S.;Kwon O. S.;Lee O. Y.;Lee M. H.;Song K. H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.353-360
    • /
    • 2005
  • Surface treatment play an important role in nucleating calcium phosphate deposition on surgical Ti implant. Therefore, the purpose of this study is to examine whether the precipitation of apatite on cp-Ti and Ti alloys are affected by surface modification in HCl and $H_2O_2$ solution. Specimens were then chemically treated with a solution containing 0.1 M HCl and 8.8M $H_2O_2$ at $80^{\circ}C$ for 30 mins, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface was examined with XRD, SEM, EDX ana XPS. Also, pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloy specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. All specimens chemically treated with HCl and $H_2O_2$ solution have the ability to form a apatite layer in the HBSS which has inorganic ion composition similar to human blood plasma. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $38.57\;{\mu}m,\;62.27\;{\mu}m\;and\;45.64\;{\mu}m$ in the cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloy specimens with the chemical treatment respectively, and $52.20\;{\mu}m,\;75.62\;{\mu}m\;and\;66.56\;{\mu}m$ in the commercial specimens of cp-Ti, Ti-6Al-4V and Ti-6Al-7Nb without any treatment respectively. The results of this evaluation indicate that the chemically treated cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloys have better bioactivity and biocompatibility compared to the other metals tested.

Additivity Factors Analysis of Compositions in Li2O-TeO2-ZnO Glass System Determined from Mixture Design (혼합물설계법에 의한 Li2O-TeO2-ZnO 유리의 물성에 대한 조성의 가성성인자 분석)

  • Jung, Young-Joon;Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.617-622
    • /
    • 2008
  • In this study, the additivity factors of compositions to density and glass transition point ($T_g$) in a $xLi_2O-(1-x)[(1-y)TeO_2-yZnO]$ (0$T_g$ was discussed. As a method for predicting the relation between glass structure and ionic conductivity, density was measured by the Archimedes method. The glass transition point was analyzed to predict the relation between ionic conductivity and the bonding energy between alkali ions and non-bridge oxygen (NBO). The relation equations showing the additivity factor of each composition to the two properties are as follows: Density(g/$cm^3$) = $2.441x_1\;+\;5.559x_2\;+\;4.863x_3\;T_g(^{\circ}C)$ = $319x_1\;+\;247x_2\;+\;609x_3\;-\;1950x_1x_3$ ($x_1$ : fraction of $Li_2O$, $x_2$ : fraction of $TeO_2$, $x_3$ : fraction of ZnO) The density decreased as $Li_2O$ content increased. This was attributed to change of the $TeO_2$ structure. From this structural result, the electric conductivity of the glass samples was predicted following the ionic conduction mechanism. Finally, it is expected that electric conductivity will increase as the activation energy for ion movement decreases.