Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.11.617

Additivity Factors Analysis of Compositions in Li2O-TeO2-ZnO Glass System Determined from Mixture Design  

Jung, Young-Joon (Division of Materials Science and Engineering, Pusan National University)
Lee, Kyu-Ho (Division of Materials Science and Engineering, Pusan National University)
Kim, Tae-Ho (Division of Materials Science and Engineering, Pusan National University)
Kim, Young-Seok (Division of Materials Science and Engineering, Pusan National University)
Na, Young-Hoon (Division of Materials Science and Engineering, Pusan National University)
Ryu, Bong-Ki (Division of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.18, no.11, 2008 , pp. 617-622 More about this Journal
Abstract
In this study, the additivity factors of compositions to density and glass transition point ($T_g$) in a $xLi_2O-(1-x)[(1-y)TeO_2-yZnO]$ (0 was discussed. As a method for predicting the relation between glass structure and ionic conductivity, density was measured by the Archimedes method. The glass transition point was analyzed to predict the relation between ionic conductivity and the bonding energy between alkali ions and non-bridge oxygen (NBO). The relation equations showing the additivity factor of each composition to the two properties are as follows: Density(g/$cm^3$) = $2.441x_1\;+\;5.559x_2\;+\;4.863x_3\;T_g(^{\circ}C)$ = $319x_1\;+\;247x_2\;+\;609x_3\;-\;1950x_1x_3$ ($x_1$ : fraction of $Li_2O$, $x_2$ : fraction of $TeO_2$, $x_3$ : fraction of ZnO) The density decreased as $Li_2O$ content increased. This was attributed to change of the $TeO_2$ structure. From this structural result, the electric conductivity of the glass samples was predicted following the ionic conduction mechanism. Finally, it is expected that electric conductivity will increase as the activation energy for ion movement decreases.
Keywords
mixture design; tellurite glass; additivity factor; ionic conduction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. C. Champarnaud-Mesjard, S. Blanchandin, P. Thomas, A. Mirgorodsky, T. Merle-Mejean and B. Frit, J. Phys. Chem. Solids, 61, 1499-1507 (2000)   DOI   ScienceOn
2 M. M. El-Desoky, J. Non-Cryst. Solids, 351, 3139 (2005)   DOI   ScienceOn
3 K. Sega, Y. Kuroda and H. Sakta, J. Mater. Sci., 33, 1303 (1998)   DOI   ScienceOn
4 N.H. Ray, J. Non-Cryst. Solids., 15, 423 (1974)   DOI   ScienceOn
5 E. T. Kang, M. J. Kim and J. D. Kim, J. Kor. Ceram. Soc., 44(4), 219 (2007)   DOI   ScienceOn
6 O. Noguera, T. Merle-Mejean, A. P. Mirgorodsky, M. B. Smirnov, P. Thomas and J.C. Champarnaud-Mesjard, J. Non-Cryst. Solids, 330, 50 (2003)   DOI   ScienceOn
7 M.M. El-Desoky, J. Mater. Sci.: Mater. Electron., 14, 215 (2003)   DOI   ScienceOn
8 M. H. Bhat, M. Kandavel, M. Ganguli and K. J. Rao, Bull. Mater. Sci., 27(2), 189 (2004)   DOI
9 K. Tanaka, T. Yoko, H. Yamada and K. Kamiya, J. Non-Cryst. Solids, 103, 250-256 (1988)   DOI   ScienceOn
10 L. Anderson and D. A. Stuart, J. Am. Ceram. Soc., 37, 573 (1954)   DOI
11 V. Kozhukraov, H. Burger, S. Neov, and B. Sizhimov, Polyhedron, 5, 771.-777 (1986)   DOI   ScienceOn
12 P. A. Thomas, J. Phys. C:Solid State Phys., 21, 4611 (1988)   DOI   ScienceOn
13 T. Sekiya, N. Mochida and A. Soejima, J. Non-cryst. Solids, 191(1-2), 115 (1995)   DOI   ScienceOn
14 A. Santafe-Moros, J. M. Gozalvez-Zafrilla, J. Lora-Garcia and J. C. Garcia-Díaz, Desalination, 185, 289 (2005)   DOI   ScienceOn
15 M. Tatsumisago, S. Kato, T. Minami and Y. Kowada, J. Non-Cryst. Solids., 192&193, 478 (1995)   DOI   ScienceOn
16 A. Dietael and Z. Elektochem, Angew Physik Chem., 48, 9 (1942)