• Title/Summary/Keyword: ion bombardment

Search Result 221, Processing Time 0.033 seconds

The Properties of Low Hydrogen Content α-Si Thin Film Using DC-bias Enhanced or Addition of H2Gas in Mesh-type PECVD System (Mesh-type PECVD를 이용한 DC-bias인가 및 수소가스 첨가에 따른 저수소화 비정질 실리콘 박막에 관한 연구)

  • Ryu, Se-Won;Gwon, Do-Hyeon;Park, Seong-Gye;Nam, Seung-Ui;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.235-239
    • /
    • 2002
  • In this study mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that, a third electrode, a mesh, is inserted between the powered and the ground electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied bias. Applied DC-bia s enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom.

Effect of Bias Voltage on the Micro Discharge Characteristic of MgO Thin Film Prepared by Unbalanced Magnetron Sputtering (불평형 마그네트론 스파터링에 의해 형성된 MgO 박막의 micro 방전에 미치는 bias 전압의 영향에 관한 연구)

  • Kim, Young-Kee;Kim, In-Sung;Jeong, Joo-Young;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2032-2034
    • /
    • 2000
  • The performance of ac plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the surface slew discharge characteristics and some physical properties of MgO thin films prepared by reactive RF planar unbalanced magnetron sputtering in connection with ac PDP. The samples prepared with the do bias voltage of -10V showed lower discharge voltage and lower erosion rate by ion bombardment than those samples prepared by conventional magnetron sputtering or E-beam evaporation. The main factor that improves the discharge characteristics by bias voltage is considered to be due to the morphology changes or crystal structure of the MgO thin film by ion bombardment during deposition process.

  • PDF

The influence of post-treatment using hydrogen ion bombardment on microstructures and field-emission properties of carbon nanotubes (수소 이온 충돌을 이용한 후처리가 탄소 나노튜브의 구조적 물성 및 전계방출 특성에 미치는 영향)

  • Yun, Sung-Jun;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1444-1445
    • /
    • 2006
  • Carbon nanotubes (CNTs) are grown on TiN-Coated silicon substrates at $700^{\circ}C$ using an ICP-CVD method. Ni catalysts for CNT growth are formed using an RF magnetron sputtering system. Post-treatment using hydrogen ions has been performed in the ICP reactor by varying the treatment period. The characterization using various techniques, such as FESEM, HRTEM, and Raman spectroscopy, show that the physical dimension as well as the crystal quality of CNTs are changed by the post-treatment process. It is also seen that the hydrogen ion-bombardment may change the surface structure of CNTs, which may lead to produce better electron emission properties. The physical reason for all the measured data obtained are discussed to establish the relationship between the structural property and the electron emission characteristic of CNTs.

  • PDF

Effect of Negative Substrate Bias Voltage on the Microstructure and Mechanical Properties of Nanostructured Ti-Al-N-O Coatings Prepared by Cathodic Arc Evaporation

  • Heo, Sungbo;Kim, Wang Ryeol;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.133-138
    • /
    • 2021
  • Ternary Ti-X-N coatings, where X = Al, Si, Cr, O, etc., have been widely used for machining tools and cutting tools such as inserts, end-mills, and etc. Ti-Al-N-O coatings were deposited onto silicon wafer and WC-Co substrates by a cathodic arc evaporation (CAE) technique at various negative substrate bias voltages. In this study, the influence of substrate bias voltages during deposition on the microstructure and mechanical properties of Ti-Al-N-O coatings were systematically investigated to optimize the CAE deposition condition. Based on results from various analyses, the Ti-Al-N-O coatings prepared at substrate bias voltage of -80 V in the process exhibited excellent mechanical properties with a higher compressive residual stress. The Ti-Al-N-O (-80 V) coating exhibited the highest hardness around 30 GPa and elastic modulus around 303 GPa. The improvement of mechanical properties with optimized bias voltage of -80 V can be explained with the diminution of macroparticles, film densification and residual stress induced by ion bombardment effect. However, the increasing bias voltage above -80 V caused reduction in film deposition rate in the Ti-Al-N-O coatings due to re-sputtering and ion bombardment phenomenon.

A Preliminary Research on Optical In-Situ Monitoring of RF Plasma Induced Ion Current Using Optical Plasma Monitoring System (OPMS)

  • Kim, Hye-Jeong;Lee, Jun-Yong;Chun, Sang-Hyun;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.523-523
    • /
    • 2012
  • As the wafer geometric requirements continuously complicated and minutes in tens of nanometers, the expectation of real-time add-on sensors for in-situ plasma process monitoring is rapidly increasing. Various industry applications, utilizing plasma impedance monitor (PIM) and optical emission spectroscopy (OES), on etch end point detection, etch chemistry investigation, health monitoring, fault detection and classification, and advanced process control are good examples. However, process monitoring in semiconductor manufacturing industry requires non-invasiveness. The hypothesis behind the optical monitoring of plasma induced ion current is for the monitoring of plasma induced charging damage in non-invasive optical way. In plasma dielectric via etching, the bombardment of reactive ions on exposed conductor patterns may induce electrical current. Induced electrical charge can further flow down to device level, and accumulated charges in the consecutive plasma processes during back-end metallization can create plasma induced charging damage to shift the threshold voltage of device. As a preliminary research for the hypothesis, we performed two phases experiment to measure the plasma induced current in etch environmental condition. We fabricated electrical test circuits to convert induced current to flickering frequency of LED output, and the flickering frequency was measured by high speed optical plasma monitoring system (OPMS) in 10 kHz. Current-frequency calibration was done in offline by applying stepwise current increase while LED flickering was measured. Once the performance of the test circuits was evaluated, a metal pad for collecting ion bombardment during plasma etch condition was placed inside etch chamber, and the LED output frequency was measured in real-time. It was successful to acquire high speed optical emission data acquisition in 10 kHz. Offline measurement with the test circuitry was satisfactory, and we are continuously investigating the potential of real-time in-situ plasma induce current measurement via OPMS.

  • PDF

Characterization of Via Etching in $CHF_3/CF_4$ Magnetically Enhanced Reactive Ion Etching Using Neural Networks

  • Kwon, Sung-Ku;Kwon, Kwang-Ho;Kim, Byung-Whan;Park, Jong-Moon;Yoo, Seong-Wook;Park, Kun-Sik;Bae, Yoon-Kyu;Kim, Bo-Woo
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • This study characterizes an oxide etching process in a magnetically enhanced reactive ion etching (MERIE) reactor with a $CHF_3/CF_4$ gas chemistry. We use a statistical $2^{4-1}$ experimental design plus one center point to characterize the relationships between the process factors and etch responses. The factors that we varied in the design include RF power, pressure, and gas composition, and the modeled etch responses were the etch rate, etch selectivity to TiN, and uniformity. The developed models produced 3D response plots. Etching of $SiO_2$ mainly depends on F density and ion bombardment. $SiO_2$ etch selectivity to TiN sensitively depends on the F density in the plasma and the effects of ion bombardment. The process conditions for a high etch selectivity are a 0.3 to 0.5 $CF_4$ flow ratio and a -600 V to -650 V DC bias voltage according to the process pressure in our experiment. Etching uniformity was improved with an increase in the $CF_4$ flow ratio in the gas mixture, an increase in the source power, and a higher pressure. Our characterization of via etching in a $CHF_3/CF_4$ MERIE using neural networks was successful, economical, and effective. The results provide highly valuable information about etching mechanisms and optimum etching conditions.

  • PDF

Ion Pump Design for Improved Pumping Speed at Low Pressure

  • Paolini, Chiara;Audi, Mauro;Denning, Mark
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2016
  • Even if ion pumps are widely and mostly used in ultra-high vacuum (UHV) conditions, virtually every existing ion pump has its maximum pumping speed around 1E-6 mbar (1E-4 Pa). Discharge intensity in the ion pump Penning cell is defined as the current divided by pressure (I/P). This quantity reflects the rate of cathode bombardment by ions, which underlies all of the various pumping mechanisms that occur in ion pumps (chemisorption on sputtered material, ion burial, etc.), and therefore is an indication of pumping speed. A study has been performed to evaluate the influence of magnetic fields and cell dimensions on the ion pump discharge intensity and consequently on the pumping speed at different pressures. As a result, a combination of parameters has been developed in order to design and build an ion pump with the pumping speed peak shifted towards lower pressures. Experimental results with several different test set-ups are presented and a prototype of a new 200 l/s ion pump with the maximum pumping speed in the 1E-8 mbar (1E-6 Pa) is described. A model of the system has also been developed to provide a framework for understanding the experimental observations.

Investigation of Some Hard Coatings Synthesized by Ion Beam Assisted Deposition

  • He, Jian-Li;Li, Wen-Zhi;He, Xial-Ming;Liu, Chang-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.163-169
    • /
    • 1995
  • Ion beam assisted deposition(IBAD) technique was used to synthesize hard coatings including diamond-like carbon(DLC), carbon nitride(CN) and metal-ceramic multilayered films. It was found that DLC films formed at low energy ion bombardment possess more $Sp^3$ bonds and much higher hardness. The films exhibited an excellent wear resistance. Nanometer multialyered Fe/TiC films was deposited by ion beam sputtering. The structure and properties were strongly dependent on the thickness of the individual layers and modulation wave length. It was disclosed that both hardness and toughness of the films could be enhanced by adjusting the deposition parameters. The CN films synthesized by IBAD method consisted of tiny crystallites dispersed in amorphous matrix, which were identified by electron diffraction pattern to be $\beta -C_3N_4$.

  • PDF

Full 3D Level Set Simulation of Nanodot Fabrication using FIBs

  • Kim, Heung-Bae
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.98-102
    • /
    • 2016
  • The level set method has recently become popular in the simulation of semiconductor processes such as etching, deposition and photolithography, as it is a highly robust and accurate computational technique for tracking moving interfaces. In this research, full three-dimensional level set simulation has been developed for the investigation of focused ion beam processing. Especially, focused ion beam induced nanodot formation was investigated with the consideration of three-dimensional distribution of redeposition particles which were obtained by Monte-Carlo simulation. Experimental validations were carried out with the nanodots that were fabricated using focused $Ga^+$ beams on Silicon substrate. Detailed description of level set simulation and characteristics of nanodot formation will be discussed in detail as well as surface propagation under focused ion beam bombardment.

Transmission Electron Microscopy Specimen Preparation for Two Dimensional Material Using Electron Beam Induced Deposition of a Protective Layer in the Focused Ion Beam Method

  • An, Byeong-Seon;Shin, Yeon Ju;Ju, Jae-Seon;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.122-125
    • /
    • 2018
  • The focused ion beam (FIB) method is widely used to prepare specimens for observation by transmission electron microscopy (TEM), which offers a wide variety of imaging and analytical techniques. TEM has played a significant role in material investigation. However, the FIB method induces amorphization due to bombardment with the high-energy gallium ($Ga^+$) ion beam. To solve this problem, electron beam induced deposition (EBID) is used to form a protective layer to prevent damage to the specimen surface. In this study, we introduce an optimized TEM specimen preparation procedure by comparing the EBID of carbon and tungsten as protective layers in FIB. The selection of appropriate EBID conditions for preparing specimens for TEM analysis is described in detail.