Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.5.98

Full 3D Level Set Simulation of Nanodot Fabrication using FIBs  

Kim, Heung-Bae (Department of Mechanical Engineering, Myongji College)
Publication Information
Applied Science and Convergence Technology / v.25, no.5, 2016 , pp. 98-102 More about this Journal
Abstract
The level set method has recently become popular in the simulation of semiconductor processes such as etching, deposition and photolithography, as it is a highly robust and accurate computational technique for tracking moving interfaces. In this research, full three-dimensional level set simulation has been developed for the investigation of focused ion beam processing. Especially, focused ion beam induced nanodot formation was investigated with the consideration of three-dimensional distribution of redeposition particles which were obtained by Monte-Carlo simulation. Experimental validations were carried out with the nanodots that were fabricated using focused $Ga^+$ beams on Silicon substrate. Detailed description of level set simulation and characteristics of nanodot formation will be discussed in detail as well as surface propagation under focused ion beam bombardment.
Keywords
Focused ion beam; Microfabrication; Nanofabrication; Level set;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. B. Kim, G. Hobler, A. Lugstein, and E. Bertagonolli, J. Micromech. Microeng. 17, 1178 (2007).   DOI
2 H. B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagonolli, Nanotechnology 18, 245303 (2007).   DOI
3 H. B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagonolli, Nanotechnology 18, 265307 (2007).   DOI
4 J. Orloff, CRC Press, 549 (2009).
5 F. Ziegler, http://www.srim.org , (2003)
6 J. A. Sethian, Combridge University Press, (1999).
7 W. Moeller and M Posselt, Dresden, Forschungszentrum Rossendorf , (2002).
8 L. Frey, C. Lehrer, and H. Ryssel, Appl. Phys. A 76, 1017 (2003).   DOI
9 J. Pellerin, D. Griffis, and P. Rusell, J. Vac. Sci. B 8, 1949 (1990).
10 D. Santamore, K. Edinger, J. Orloff, and J. Melngailis, J. Vac. Sci. Technol. B 15, 2346 (1997).   DOI
11 A. A. Tseng, J. Micromech. Microeng. 14, R15 (2003).
12 S. Reyntjens and R. Puers, J. Micromech. Microeng. 11, 287 (2001).   DOI
13 R. Young, Vacuum 44, 353 (1993).   DOI
14 M. J. Vasile, Z N Nassar, and S. Liu, J, Vac, Sci, Technol B 15, 2350 (1997).   DOI
15 M. J. Vasile, J. Xie, and R. Nassar, J. Vac. Sci. Technol. B 17, 3085 (1999).   DOI
16 D. P. Adams and M. J. Vasile, J. Vac. Sci. Technol. B 24, 836 (2006).   DOI
17 D. P. Adams, M. J. Vasile, and T. M. Mayer, J. Vac. Sci Technol. B 24, 1766 (2006).   DOI
18 Y. Fu and N. K. A. Bryan, J. Vac. Sci. Technol. B 22, 1672 (2004).   DOI
19 H. B. Kim, G. Hobler, A. Steiger, A. Lugstein, E. Bertagnolli, E. Platzgummer, and H. Loeschner, Int. J. Precis. Eng. Manuf., 12, 893 (2011).   DOI
20 H. B. Kim, Micromech. Microeng. 88, 3365 (2011).
21 H. B. Kim, Micromech. Microeng. 91, 14 (2012).
22 H. B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagonolli, Opt. Exp. 15, 9444 (2007).   DOI
23 I. V. Katardjiev, J. Vac. Sci. Technol. A6, 2434 (1998).