• 제목/요약/키워드: iodine-sulfur process

검색결과 48건 처리시간 0.018초

분리막 기술을 이용한 열화학적 수소제조 IS[요오드-황] 프로세스의 개선 (Improvement of the Thermochemical water-splitting IS Process Using the Membrane Technology)

  • 황갑진;김종원;심규성
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.249-258
    • /
    • 2002
  • Thermochemical water-splitting IS(Iodine-Sulfur) process has been investigating for large-scale hydrogen production. For the construction of an efficient process scheme, two kinds of membrane technologies are under investigating to improve the hydrogen producing HI decomposition step. One is a concentration of HI in quasi-azeotropic HIx ($HI-H_2O-I_2$) solution by elecro-electrodialysis. It was confirmed that HI concentrated from the $HI-H_2O-I_2$ solution with a molar ratio of 1:5:1 at $80^{\circ}C$. The other is a membrane reactor to enhance the one-pass conversion of thermal decomposition reaction of gaseous hydrogen iodide (HI). It was found from the simulation study that the conversion of over 0.9 would be attainable using the membrane reactor using the gas permeation properties of the prepared silica hydrogen permselective membrane by chemical vapor deposition (CVD). Design criterion of the membrane reactor was also discussed.

황-요오드 수소 제조 공정에서 초음파 조사를 이용한 분젠 반응의 특성 (Characteristics of Bunsen Reaction using Ultrasonic Irradiation in Sulfur-iodine Hydrogen Production Process)

  • 김효섭;이동희;이종규;박주식;김영호
    • 공업화학
    • /
    • 제29권1호
    • /
    • pp.56-61
    • /
    • 2018
  • 황-요오드(SI) 공정의 통합 운전을 위한 분젠 반응 단계에서, $I_2$$H_2O$ 반응물들은 $HI_x$ 용액 내 용해된 성분들로써 공급된다. $HI_x$ 용액과 $SO_2$ 공급을 이용하여 분젠 반응이 수행될 때 $HI_x$ 상 내 대부분의 $H_2SO_4$ 생성물이 존재하며, 이에 따라 $HI_x$ 상에 대한 $H_2SO_4$ 상의 부피 비가 매우 낮다. 본 연구에서 우리는 상 분리 성능을 향상시키기 위해 $HI_x$ 용액을 이용한 분젠 반응에 대한 초음파 조사의 효과들을 연구하였다. 분젠 반응과 함께 초음파가 조사될 때 $HI_x$ 상으로부터 $H_2SO_4$ 상으로 이동된 $H_2SO_4$의 양은 최대 58.0 mol%까지 증가하였으며, $H_2SO_4$ 상의 부피 또한 최대 13.1 vol%까지 증가하였다. 특히, 상 분리에 대한 초음파 조사의 효과는 온도, $I_2$$H_2O$ 공급 농도가 감소함에 따라 향상되었다. 초음파 조사는 $HI_x$ 상 내 반응 평형을 미시적으로 이동시킴으로써 추가적인 $H_2O$ 분자들의 형성을 유도하였다. 이로부터 추가적으로 생성된 $H_2O$ 및 분리된 $H_2SO_4$ 분자들이 $H_2SO_4$ 상으로 이동할 수 있는 더 많은 $H_2SO_4{\cdot}xH_2O$ (x = 5-6) 착물들을 형성하였다.

HI 농축에 대한 전기투석 셀의 성능 및 운전한계조건 연구 (A Study on the Performance and Operation Limit of Electrodialysis Cell for HI Concentration)

  • 이병우;정성욱;조원철;강경수;박주식;배기광;김영호;김창희
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.749-758
    • /
    • 2011
  • The present work explores the performance and operation limit of electrodialysis cell for HI concentration in sulfur iodine thermochemical hydrogen production process, For this purpose, the electrodialysis cell was assembled with Nafion 117 as a PEM membrane and two activated carbon papers as the electrodes. HIx solution was prepared with composition of HI: $I_2$: $H_2O$ = 1: 0.5~2.5: 5.2 in molar ratio. The cell and its peripheral apparatus were placed in the specially designed convective oven in order to uniformly maintain the operation temperature. As operation temperature increased, the amount of water transport from anode to cathode increased, thus reducing HI molarity in catholyte. Meanwhile, the current efficiency was constant as about 90 %, irrespective of temperature change. The cell voltage increased with initial $I_2$ mole ratio as well as anolyte to catholyte mole ratio. Moreover the cell voltage overshot took place within 10 h cell operation, which is due to the $I_2$ precipitation inside the cell. From the analysis of $I_2$ mole ratio in the anolyte, it is noted that operation limit (in $I_2$ mole ratio) of the electrodialysis cell, arising from was measured to be 3.2, which is much lower than bulk solubility limit of 4.7.

HIx 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO2-O2 혼합물 기체의 영향 (The Effect of SO2-O2 Mixture Gas on Phase Separation Composition of Bunsen Reaction with HIx solution)

  • 한상진;김효섭;안병태;김영호;박주식;배기광;이종규
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.421-428
    • /
    • 2012
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the $O_2$ produced from a $H_2SO_4$ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A $HI_x$ ($I_2+HI+H_2O$) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of $I_2$ in a $HI_x$ solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using $SO_2-O_2$ mixture gases in the presence of the $HI_x$ solution was carried out to identify the effect of $O_2$. The amount of $I_2$ unreacted under the feed of $SO_2-O_2$ mixture gases was little higher than that under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The $O_2$ in $SO_2-O_2$ mixture gases also played a role to decrease the amount of a impurity in $HI_x$ phase by only striping effect, while that in $H_2SO_4$ phase was hardly affected.

수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구 (A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production)

  • 신재선;조성진;최석훈;파라즈카심;이흥래;박제호;이원재;이의수;박상진
    • Korean Chemical Engineering Research
    • /
    • 제52권4호
    • /
    • pp.459-466
    • /
    • 2014
  • 열화학적인 수소 생산 공정 중 하나인 S-I Cycle은 요오드와 황을 이용한 수소 생산 공정으로써 물 분자로부터 수소 분자를 얻어내는 순환 공정이다. 수소 생산 공정에 열을 공급하고자 하는 초고온 원자로(VHTR; Very High Temperature Reactor)는 원자로에서 수소 생산 공정으로 방사능 없이 안전하게 열을 전달하기 위하여 중간열교환기(IHX; Intermediate Heat Exchanger)가 필요하다. 본 연구에서는 수소 생산공정과 초고온 원자로간의 중간 열교환 공정을 모사하여 운전압력 및 작동 유체의 변화에 따른 중간 열교환기의 효율을 계산하고 가장 경제적인 중간 열교환기를 설계하기 위한 공정 조건을 도출하였다.

Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

  • Kim, Dong-Jin;Lee, Han Hee;Kwon, Hyuk Chul;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.37-43
    • /
    • 2007
  • Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at $120^{\circ}C$ and 98 wt% at $320^{\circ}C$. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition.

SI 열화학싸이클 황산분해공정의 Bench-scale 상압 실험 (Bench-scale Test of Sulfuric Acid Decomposition Process in SI Thermochemical Cycle at Ambient Pressure)

  • 전동근;이기용;김홍곤;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.139-151
    • /
    • 2011
  • The sulfur-iodine (SI) thermochemical water splitting cycle is one of promising hydrogen production methods from water using high-temperature heat generated from a high temperature gas-cooled nuclear reactor (HTGR). The SI cycle consists of three main units, such as Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition. The feasibility of continuous operation of a series of subunits for $H_2SO_4$ decomposition was investigated with a bench-scale facility working at ambient pressure. It showed stable and reproducible $H_2SO_4$ decomposition by steadily producing $SO_2$ and $O_2$ corresponding to a capacity of 1 mol/h $H_2$ for 24 hrs.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

HIx 용액을 이용한 연속식 분젠 반응에 미치는 SO2용해도의 영향 (Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution)

  • 김종석;박주식;강경수;정성욱;조원철;김영호;배기광
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.13-21
    • /
    • 2016
  • The Sulfur-Iodine thermochemical hydrogen production process (SI process) consists of the Bunsen reaction section, the $H_2SO_4$ decomposition section, and the HI decomposition section. The $HI_x$ solution ($I_2-HI-H_2O$) could be recycled to Bunsen reaction section from the HI decomposition section in the operation of the integrated SI process. The phase separation characteristic of the Bunsen reaction using the $HI_x$ solution was similar to that of $I_2-H_2O-SO_2$ system. On the other hands, the amount of produced $H_2SO_4$ phase was small. To investigate the effects of $SO_2$ solubility on Bunsen reaction, the continuous Bunsen reaction was performed at variation of the amounts of $SO_2$ gas. Also, it was carried out to make sure of the effects of partial pressure of $SO_2$ in the condition of 3bar of $SO_2-O_2$ atmosphere. As the results, the characteristic of Bunsen reaction was improved with increasing the amounts and solubility of $SO_2$ gas. The concentration of Bunsen products was changed by reverse Bunsen reaction and evaporation of HI after 12 h.