DOI QR코드

DOI QR Code

A Study on the Performance and Operation Limit of Electrodialysis Cell for HI Concentration

HI 농축에 대한 전기투석 셀의 성능 및 운전한계조건 연구

  • Lee, Byung-Woo (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Jeong, Seong-Uk (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Cho, Won-Chul (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kang, Kyoung-Soo (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Park, Chu-Sik (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Bae, Ki-Kwang (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam University) ;
  • Kim, Chang-Hee (Hydrogen Energy Research Center, Korea Institute of Energy Research)
  • 이병우 (한국에너지기술연구원 수소에너지연구센터) ;
  • 정성욱 (한국에너지기술연구원 수소에너지연구센터) ;
  • 조원철 (한국에너지기술연구원 수소에너지연구센터) ;
  • 강경수 (한국에너지기술연구원 수소에너지연구센터) ;
  • 박주식 (한국에너지기술연구원 수소에너지연구센터) ;
  • 배기광 (한국에너지기술연구원 수소에너지연구센터) ;
  • 김영호 (충남대학교 정밀응용화학과) ;
  • 김창희 (한국에너지기술연구원 수소에너지연구센터)
  • Received : 2011.10.04
  • Accepted : 2011.12.27
  • Published : 2011.12.31

Abstract

The present work explores the performance and operation limit of electrodialysis cell for HI concentration in sulfur iodine thermochemical hydrogen production process, For this purpose, the electrodialysis cell was assembled with Nafion 117 as a PEM membrane and two activated carbon papers as the electrodes. HIx solution was prepared with composition of HI: $I_2$: $H_2O$ = 1: 0.5~2.5: 5.2 in molar ratio. The cell and its peripheral apparatus were placed in the specially designed convective oven in order to uniformly maintain the operation temperature. As operation temperature increased, the amount of water transport from anode to cathode increased, thus reducing HI molarity in catholyte. Meanwhile, the current efficiency was constant as about 90 %, irrespective of temperature change. The cell voltage increased with initial $I_2$ mole ratio as well as anolyte to catholyte mole ratio. Moreover the cell voltage overshot took place within 10 h cell operation, which is due to the $I_2$ precipitation inside the cell. From the analysis of $I_2$ mole ratio in the anolyte, it is noted that operation limit (in $I_2$ mole ratio) of the electrodialysis cell, arising from was measured to be 3.2, which is much lower than bulk solubility limit of 4.7.

Keywords

References

  1. 김미선, "수소 혁명의 시대", 살림출판사, 2005, pp. 5-10.
  2. J. E. Funk, "Thermochemical Hydrogen Production: Past and Present", Int. J. Hydrogen Energy, Vol. 26, 2001, pp. 185-190. https://doi.org/10.1016/S0360-3199(00)00062-8
  3. J. L. Russell, K. H. McCorkle, J. H. Norman, J. T. Porter, T. S. Roemer, J. R. Schuster, R. S. Sharp, Water splitting - a progress report, Proceedings of First World Hydrogen Energy Conference, Miami Beach, USA; March 1976, pp. 1A105-124.
  4. J. H. Norman, G. E. Besenbruch, and D. R. O`keefe, "Thermochemical Water-Splitting for Hydrogen Production", GRI-80/0105, 1981.
  5. J. H. Norman, G. E. Besenbruch, L. C. Brown, D. R. O`keefe, C. L. Allen, "Thermochemical Water-Splitting Cycle: Bench-Scale Investigations and Process Engineering", GA-A 16713, 1982.
  6. L. C. Brown, R. D. Lentsch, G. E. Besenbruch, K. R. Schults, J. E. Funk, "Alternative Flowsheets for the Sulfur-Iodine Thermochemical Hydrogen Cycle", Proceedings of AIChE 2003 Spring National Meeting, New Orleans, USA, 2003.
  7. K. Onuki, S. Shimizu, H. Nakajima, S. Fujita, Y. Ikezoe, S. Sato, S. Machi, "Studies on an Iodine-Sulfur Process for Thermochemical Hydrogen Production", Proceedings of the Eighth World Hydrogen Energy Conference, Honolulu and Waikoloa, USA; July 1990, pp. 547-556.
  8. K. Onuki, M. Nomura, H. Nakajima, S. Kubo, S. Kasahara, S. Higashi, S. Ishiyama, N. Akino, S. Shimizu, "R&D on Iodine-Sulfur Thermochemical Water Splitting Cycle at JAERI", Proceedings of AIChE 2003 Spring National Meeting, New Orleans, USA, 2003.
  9. K. Onuki, H. Nakajima, S. Shimizu, Yousoioukei netsukagakusaikuru niyoru suisoseizou. Ekuserugi Saiseisanno Gakuri, Minbusyo, 1996, pp. 218-223(in Japanese).
  10. K. Onuki, H. Nakajima, S. Shimizu, "Concentration of HIx Solution by Electrodialysis", Kagaku Kogaku Ronbunshu, 1997; 23, pp. 289-291 (in Japanese). https://doi.org/10.1252/kakoronbunshu.23.289
  11. G. J. Hwang, K. Onuki, M. Nomura, S. Kasahara, J. W. Kim, "Improvement of the Thermochemical Water-Splitting IS (iodine-sulfur) Process by Electro-Electrodialysis", J. Membr. Sic., Vol. 220, 2003, pp. 129-136. https://doi.org/10.1016/S0376-7388(03)00224-2
  12. S. Kasahara, G. J. Hwang, H. Nakajima, H. S. Choi, K. Onuki, M. Nomura, "Effects of the Process Parameters of the IS Process on Total Thermal Efficiency to Produce Hydrogen from Water", J. Chem. Eng. Jpn., in press.
  13. S. Kubo, H. Nakajima, S. Higashi, K. Onuki, S. Shimizu, N. Akino, "Construction of Apparatus for Thermochemical Hydrogen Production Process", Proceedings of 11th Canadian Hydrogen Conference, Victoria, Canada, June 2001.
  14. C. H. Kim, B. K. Kim, K. S. Kang, C. S. Park, S. H. Lee, S. D. Hong, G. J. Hwang, and K. K. Bae, "A Study on the HI concentration by Polymer Electrolyte Membrane Electrodialysis", Proceedings of Third Information Exchange Meeting on the Nuclear Production of Hydrogen, OECD NEA Meeting, Oarai, Japan, 2005.
  15. C. H. Kim, W. C. Cho, K. S. Kang, C. S. Park, K. K. Bae, "Effect of Catholyte to Anolyte Amount Ratio on the Electrodialysis Cell Performance for HI Concentration", trans. of the Korean Hydrogen and New Energy Society, Vol. 21, 2010, pp. 507-512.
  16. M. Roth and K. F. Knoche, "Thermochemical Water Splitting Through Direct HI-Decomposition from $H_{2}O/HI/I_{2}$ Solutions", Int. J. Hydrogen Energy, Vol. 14, 1989, pp. 545-549. https://doi.org/10.1016/0360-3199(89)90112-2
  17. S. Kasahara, S. Kubo, K. Onuki, M. Nomura, "Thermal Efficiency Evaluation of HI Synthesis/ Concentration Procedures in the Thermochemical Water Splitting IS Process", Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 579-587. https://doi.org/10.1016/j.ijhydene.2003.08.005
  18. K. Onuki, G. J. Hwang, Arifal, S. Shimizu, "Electro-Electrodialysis of Hydriodic Acid in the Presence of Iodine at Elevated Temperature", J. Membr. Sic., Vol. 192, 2001, pp. 193-199. https://doi.org/10.1016/S0376-7388(01)00500-2
  19. N. Tanaka, T. Yamaki, M. Asano, Y. Maekawa, K. Onuki, "Electro-Electrodialysis of $HI-I_{2}-H_{2}O $ Mixture Using Radiation-Grafted Polymer Electrolyte Membranes", J. Membr. Sic., Vol. 346, 2010, pp. 136-142. https://doi.org/10.1016/j.memsci.2009.09.030
  20. M. Lanchi, A. Ceroli, T. Liberatore, L. Marrelli, M. Maschietti, A. Spadoni, P. Tarquini, "S-I Thermochemical Cycle: A Thermodynamic Analysis of the $HI-H_{2}O-I_{2}$ System and Design of the HIx Decomposition Section", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 2121-2132. https://doi.org/10.1016/j.ijhydene.2008.11.029
  21. V. T. Calabrese, A. Khan, "Polyiodine and Polyiodide Species in an Aqueous Solution of Iodine + KI: Theoretical and Experimental Studies", J. Phys. Chem. A., Vol. 104, 2000, pp. 1287-1292. https://doi.org/10.1021/jp992847r
  22. J. O. Bockris A. K. N. Reddy "Modern Electrochemistry", 1970 Plenum Press, New York, 1973.
  23. P. K. Sow, S. Sant, A Shukla, "EIS Studies on Electro-Electrodialysis Cell for Concentration of Hydriodic Acid", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 8868-8875. https://doi.org/10.1016/j.ijhydene.2010.06.031
  24. J. Y. Hur, J. P. O`Connell, K. K. Bae, K. S. Kang, J. W. Kang, "Measurements and Correlation of Solid-Liquid Equilibria of the $HI+I_{2}+H_{2}O$ System", Int. J. Hydrogen Energy, Vol. 36, 2011, pp. 8187-8191. https://doi.org/10.1016/j.ijhydene.2011.04.125
  25. 변수일, "최신재료전기화학", 청문각, 2003.
  26. S. H. Lee, I. S. Moon, C. H. Kim, K. S. Kang, C. S. Park, K. K. Bae, "A Study on the Efficiency of Hydrogen-Oxygen Mixture Gas Generation Stack", trans. of the Korean Hydrogen and New Energy Society, Vol. 17, 2006, pp. 409-417.