Browse > Article
http://dx.doi.org/10.14478/ace.2017.1105

Characteristics of Bunsen Reaction using Ultrasonic Irradiation in Sulfur-iodine Hydrogen Production Process  

Kim, Hyo Sub (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
Lee, Dong Hee (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
Lee, Jong Gyu (Climate and Energy Research Group, Research Institute of Industrial Science & Technology)
Park, Chu Sik (Hydrogen Energy Research Center, Korea Institute of Energy Research)
Kim, Young Ho (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.1, 2018 , pp. 56-61 More about this Journal
Abstract
In Bunsen reaction section for the integrated operation of sulfur-iodine (SI) process, $I_2$ and $H_2O$ reactants are supplied as dissolved species in an $HI_x$ solution. Most of the $H_2SO_4$ product is found in the $HI_x$ phase when Bunsen reaction is performed using the $HI_x$ solution and $SO_2$ feed, so that the volume ratio of the $H_2SO_4$ phase to the $HI_x$ phase is very low. In this study, we investigated the effects of ultrasound irradiation on Bunsen reaction using the $HI_x$ solution to improve its phase separation performance. With ultrasound irradiation, the amount of $H_2SO_4$ moved to the $H_2SO_4$ phase from the $HI_x$ phase increased by up to 58.0 mol% and the volume of $H_2SO_4$ phase also increased by up to 13.1 vol%. In particular, the effect of ultrasound irradiation on the phase separation was improved with decreasing operating temperature, $I_2$ and $H_2O$ feed concentrations. The ultrasound irradiation induces the formation of additional $H_2O$ molecules by shifting microscopically the reaction equilibrium in the $HI_x$ phase. Afterward, the additionally generated $H_2O$ and isolated $H_2SO_4$ molecules form more $H_2SO_4{\cdot}xH_2O$ (x = 5-6) clusters that can be moved to the $H_2SO_4$ phase.
Keywords
sulfur-iodine process; hydrogen production; bunsen reaction; HIx solution; ultrasonic irradiation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Parisi, A. Giaconia, S. Sau, A. Spadoni, G. Caputo, and P. Tarquini, Bunsen reaction and hydriodic phase purification in the sulfur-iodine process: An experimental investigation, Int. J. Hydrogen Energy, 36, 2007-2013 (2011).
2 P. W. Cains, P. D. Martin, and C. J. Price, The use of ultrasound in industrial chemical synthesis and crystallization. 1. applications to synthetic chemistry, Org. Process Res. Dev., 2, 34-48 (1998).
3 M. Ali and I. A. Watson, Comparison of oil extraction methods, energy analysis and biodiesel production from flax seeds, Int. J. Energ. Res., 38, 614-625 (2014).
4 J. E. Funk and R. M. Reinstrom, Energy requirements in the production of hydrogen from water, Ind. Eng. Chem. Process Des. Dev., 5, 336-342 (1966).
5 J. H. Norman, G. E. Besenbruch, L. C. Brown, D. R. O'Keefe, and C. L. Allen, Thermochemical water-splitting cycle, bench-scale investigations, and process engineering, General Atomic Company, GA-A16713 (1982).
6 S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, and K. Onuki, A demonstration study on a closed cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process, Nucl. Eng. Des., 233, 347-354 (2004).
7 S. Kasahara, G. J. Hwang, H. Nakajima, H. S. Choi, K. Onuki, and M. Nomura, Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water, J. Chem. Eng. Jpn., 36, 887-899 (2003).
8 S. Kasahara, S. Kubo, K. Onuki, and M. Nomura, Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process, Int. J. Hydrogen Energy, 29, 579-587 (2004).
9 M. Ball and M. Wietschel, The future of hydrogen - opportunities and challenges, Int. J. Hydrogen Energy, 34, 615-627 (2009).
10 M. Sakurai, H. Nakajima, K. Onuki, and S. Shimizu, Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process, Int. J. Hydrogen Energy, 25, 605-611 (2000).
11 S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource, J. Ind. Eng. Chem., 20, 1148-1156 (2014).
12 J. Turner, G. Sverdrup, M. K. Mann, P. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, Renewable hydrogen production, Int. J. Energy Res., 32, 379-407 (2008).
13 M. B. Richards, A. S. Shenoy, L. C. Brown, R. T. Buckingham, E. A. Harvego, K. L. Peddicord, S. M. M. Reza, and J. P. Coupey, $H_2$-MHR pre-conceptual design report: SI-based plant - final technical report for the period september 2002 through september 2005, General Atomics Report, GA-A25401 (2006).
14 S. Goldstein, J. M. Borgard, and X. Vitart, Upper bound and best estimate of the efficiency of the iodine sulphur cycle, Int. J. Hydrogen Energy, 30, 619-626 (2005).
15 Y. H. Kang, J. C. Ryu, C. S. Park, G. J. Hwang, S. H. Lee, K. K. Bae, and Y. H. Kim, The study on Bunsen reaction process for iodine-sulfur thermochemical hydrogen production, Korean Chem. Eng. Res., 44, 410-416 (2006).
16 D. H. Lee, K. J. Lee, Y. H. Kang, Y. H. Kim, C. S. Park, G. J. Hwang, and K. K. Bae, High temperature phase separation of $H_2SO_4-HI-H_2O-I_2$ system in iodine-sulfur hydrogen production process, Trans. Korean Hydrogen New Energy Soc., 17, 395-402 (2006).
17 K. J. Lee, Y. H. Kim, C. S. Park, and K. K. Bae, Phase separation characteristics via Bunsen reaction in sulfur-iodine thermochemical hydrogen production process, Trans. Korean Hydrogen New Energy Soc., 19, 386-393 (2008).
18 W. C. Cho, C. S. Park, K. S. Kang, C. H. Kim, and K. K. Bae, Conceptual design of sulfur-iodine hydrogen production cycle of Korea Institute of Energy Research, Nucl. Eng. Des., 239, 501-507 (2009).
19 H. S. Kim, Y. H. Kim, B. T. Ahn, J. G. Lee, C. S. Park, and K. K. Bae, Phase separation characteristics of the Bunsen reaction when using $HI_x$ solution ($HI-I_2$-$H_2O$) in the sulfur-iodine hydrogen production process, Int. J. Hydrogen Energy, 39, 692-701 (2014).
20 S. B. Lee, J. D. Lee, and I. K. Hong, Ultrasonic energy effect on vegetable oil based biodiesel synthetic process, J. Ind. Eng. Chem., 17, 138-143 (2011).
21 K. Harikumar and V. Rajendran, Ultrasound assisted the preparation of 1-butoxy-4-nitrobenzene under a new multi-site phasetransfer catalyst - Kinetic study, Ultrason. Sonochem., 21, 208-215 (2014).
22 Y. Seo and J. H. Kim, Rapid dye adsorption for dye-sensitized solar cells using a simple ultrasonication method, J. Ind. Eng. Chem., 19, 488-492 (2013).