DOI QR코드

DOI QR Code

황-요오드 수소 제조 공정에서 초음파 조사를 이용한 분젠 반응의 특성

Characteristics of Bunsen Reaction using Ultrasonic Irradiation in Sulfur-iodine Hydrogen Production Process

  • 김효섭 (충남대학교 응용화학공학과) ;
  • 이동희 (충남대학교 응용화학공학과) ;
  • 이종규 (포항산업과학연구원 기후에너지연구그룹) ;
  • 박주식 (한국에너지기술연구원 수소연료전지연구) ;
  • 김영호 (충남대학교 응용화학공학과)
  • Kim, Hyo Sub (Department of Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Lee, Dong Hee (Department of Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Lee, Jong Gyu (Climate and Energy Research Group, Research Institute of Industrial Science & Technology) ;
  • Park, Chu Sik (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kim, Young Ho (Department of Chemical Engineering & Applied Chemistry, Chungnam National University)
  • 투고 : 2017.10.16
  • 심사 : 2017.11.20
  • 발행 : 2018.02.10

초록

황-요오드(SI) 공정의 통합 운전을 위한 분젠 반응 단계에서, $I_2$$H_2O$ 반응물들은 $HI_x$ 용액 내 용해된 성분들로써 공급된다. $HI_x$ 용액과 $SO_2$ 공급을 이용하여 분젠 반응이 수행될 때 $HI_x$ 상 내 대부분의 $H_2SO_4$ 생성물이 존재하며, 이에 따라 $HI_x$ 상에 대한 $H_2SO_4$ 상의 부피 비가 매우 낮다. 본 연구에서 우리는 상 분리 성능을 향상시키기 위해 $HI_x$ 용액을 이용한 분젠 반응에 대한 초음파 조사의 효과들을 연구하였다. 분젠 반응과 함께 초음파가 조사될 때 $HI_x$ 상으로부터 $H_2SO_4$ 상으로 이동된 $H_2SO_4$의 양은 최대 58.0 mol%까지 증가하였으며, $H_2SO_4$ 상의 부피 또한 최대 13.1 vol%까지 증가하였다. 특히, 상 분리에 대한 초음파 조사의 효과는 온도, $I_2$$H_2O$ 공급 농도가 감소함에 따라 향상되었다. 초음파 조사는 $HI_x$ 상 내 반응 평형을 미시적으로 이동시킴으로써 추가적인 $H_2O$ 분자들의 형성을 유도하였다. 이로부터 추가적으로 생성된 $H_2O$ 및 분리된 $H_2SO_4$ 분자들이 $H_2SO_4$ 상으로 이동할 수 있는 더 많은 $H_2SO_4{\cdot}xH_2O$ (x = 5-6) 착물들을 형성하였다.

In Bunsen reaction section for the integrated operation of sulfur-iodine (SI) process, $I_2$ and $H_2O$ reactants are supplied as dissolved species in an $HI_x$ solution. Most of the $H_2SO_4$ product is found in the $HI_x$ phase when Bunsen reaction is performed using the $HI_x$ solution and $SO_2$ feed, so that the volume ratio of the $H_2SO_4$ phase to the $HI_x$ phase is very low. In this study, we investigated the effects of ultrasound irradiation on Bunsen reaction using the $HI_x$ solution to improve its phase separation performance. With ultrasound irradiation, the amount of $H_2SO_4$ moved to the $H_2SO_4$ phase from the $HI_x$ phase increased by up to 58.0 mol% and the volume of $H_2SO_4$ phase also increased by up to 13.1 vol%. In particular, the effect of ultrasound irradiation on the phase separation was improved with decreasing operating temperature, $I_2$ and $H_2O$ feed concentrations. The ultrasound irradiation induces the formation of additional $H_2O$ molecules by shifting microscopically the reaction equilibrium in the $HI_x$ phase. Afterward, the additionally generated $H_2O$ and isolated $H_2SO_4$ molecules form more $H_2SO_4{\cdot}xH_2O$ (x = 5-6) clusters that can be moved to the $H_2SO_4$ phase.

키워드

참고문헌

  1. M. Ball and M. Wietschel, The future of hydrogen - opportunities and challenges, Int. J. Hydrogen Energy, 34, 615-627 (2009).
  2. S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource, J. Ind. Eng. Chem., 20, 1148-1156 (2014).
  3. J. Turner, G. Sverdrup, M. K. Mann, P. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, Renewable hydrogen production, Int. J. Energy Res., 32, 379-407 (2008).
  4. J. E. Funk and R. M. Reinstrom, Energy requirements in the production of hydrogen from water, Ind. Eng. Chem. Process Des. Dev., 5, 336-342 (1966).
  5. J. H. Norman, G. E. Besenbruch, L. C. Brown, D. R. O'Keefe, and C. L. Allen, Thermochemical water-splitting cycle, bench-scale investigations, and process engineering, General Atomic Company, GA-A16713 (1982).
  6. S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, and K. Onuki, A demonstration study on a closed cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process, Nucl. Eng. Des., 233, 347-354 (2004).
  7. S. Kasahara, G. J. Hwang, H. Nakajima, H. S. Choi, K. Onuki, and M. Nomura, Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water, J. Chem. Eng. Jpn., 36, 887-899 (2003).
  8. S. Kasahara, S. Kubo, K. Onuki, and M. Nomura, Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process, Int. J. Hydrogen Energy, 29, 579-587 (2004).
  9. M. Sakurai, H. Nakajima, K. Onuki, and S. Shimizu, Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process, Int. J. Hydrogen Energy, 25, 605-611 (2000).
  10. S. Goldstein, J. M. Borgard, and X. Vitart, Upper bound and best estimate of the efficiency of the iodine sulphur cycle, Int. J. Hydrogen Energy, 30, 619-626 (2005).
  11. Y. H. Kang, J. C. Ryu, C. S. Park, G. J. Hwang, S. H. Lee, K. K. Bae, and Y. H. Kim, The study on Bunsen reaction process for iodine-sulfur thermochemical hydrogen production, Korean Chem. Eng. Res., 44, 410-416 (2006).
  12. D. H. Lee, K. J. Lee, Y. H. Kang, Y. H. Kim, C. S. Park, G. J. Hwang, and K. K. Bae, High temperature phase separation of $H_2SO_4-HI-H_2O-I_2$ system in iodine-sulfur hydrogen production process, Trans. Korean Hydrogen New Energy Soc., 17, 395-402 (2006).
  13. K. J. Lee, Y. H. Kim, C. S. Park, and K. K. Bae, Phase separation characteristics via Bunsen reaction in sulfur-iodine thermochemical hydrogen production process, Trans. Korean Hydrogen New Energy Soc., 19, 386-393 (2008).
  14. W. C. Cho, C. S. Park, K. S. Kang, C. H. Kim, and K. K. Bae, Conceptual design of sulfur-iodine hydrogen production cycle of Korea Institute of Energy Research, Nucl. Eng. Des., 239, 501-507 (2009).
  15. M. B. Richards, A. S. Shenoy, L. C. Brown, R. T. Buckingham, E. A. Harvego, K. L. Peddicord, S. M. M. Reza, and J. P. Coupey, $H_2$-MHR pre-conceptual design report: SI-based plant - final technical report for the period september 2002 through september 2005, General Atomics Report, GA-A25401 (2006).
  16. H. S. Kim, Y. H. Kim, B. T. Ahn, J. G. Lee, C. S. Park, and K. K. Bae, Phase separation characteristics of the Bunsen reaction when using $HI_x$ solution ($HI-I_2$-$H_2O$) in the sulfur-iodine hydrogen production process, Int. J. Hydrogen Energy, 39, 692-701 (2014).
  17. S. B. Lee, J. D. Lee, and I. K. Hong, Ultrasonic energy effect on vegetable oil based biodiesel synthetic process, J. Ind. Eng. Chem., 17, 138-143 (2011).
  18. Y. Seo and J. H. Kim, Rapid dye adsorption for dye-sensitized solar cells using a simple ultrasonication method, J. Ind. Eng. Chem., 19, 488-492 (2013).
  19. K. Harikumar and V. Rajendran, Ultrasound assisted the preparation of 1-butoxy-4-nitrobenzene under a new multi-site phasetransfer catalyst - Kinetic study, Ultrason. Sonochem., 21, 208-215 (2014).
  20. M. Parisi, A. Giaconia, S. Sau, A. Spadoni, G. Caputo, and P. Tarquini, Bunsen reaction and hydriodic phase purification in the sulfur-iodine process: An experimental investigation, Int. J. Hydrogen Energy, 36, 2007-2013 (2011).
  21. P. W. Cains, P. D. Martin, and C. J. Price, The use of ultrasound in industrial chemical synthesis and crystallization. 1. applications to synthetic chemistry, Org. Process Res. Dev., 2, 34-48 (1998).
  22. M. Ali and I. A. Watson, Comparison of oil extraction methods, energy analysis and biodiesel production from flax seeds, Int. J. Energ. Res., 38, 614-625 (2014).