DOI QR코드

DOI QR Code

Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution

HIx 용액을 이용한 연속식 분젠 반응에 미치는 SO2용해도의 영향

  • KIM, JONGSEOK (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • PARK, CHUSIK (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • KANG, KYOUNGSOO (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • JEONG, SEONGUK (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • CHO, WON CHUL (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • KIM, YOUNG HO (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • BAE, KI KWANG (Hydrogen Energy Research Center, Korea Institute of Energy Research)
  • Received : 2016.02.01
  • Accepted : 2016.02.28
  • Published : 2016.02.29

Abstract

The Sulfur-Iodine thermochemical hydrogen production process (SI process) consists of the Bunsen reaction section, the $H_2SO_4$ decomposition section, and the HI decomposition section. The $HI_x$ solution ($I_2-HI-H_2O$) could be recycled to Bunsen reaction section from the HI decomposition section in the operation of the integrated SI process. The phase separation characteristic of the Bunsen reaction using the $HI_x$ solution was similar to that of $I_2-H_2O-SO_2$ system. On the other hands, the amount of produced $H_2SO_4$ phase was small. To investigate the effects of $SO_2$ solubility on Bunsen reaction, the continuous Bunsen reaction was performed at variation of the amounts of $SO_2$ gas. Also, it was carried out to make sure of the effects of partial pressure of $SO_2$ in the condition of 3bar of $SO_2-O_2$ atmosphere. As the results, the characteristic of Bunsen reaction was improved with increasing the amounts and solubility of $SO_2$ gas. The concentration of Bunsen products was changed by reverse Bunsen reaction and evaporation of HI after 12 h.

Keywords

References

  1. J. E. Funk, "Thermochemical Hydrogen Production: Past and Present", Int. J. Hydrogen Energy, Vol. 26, 2001, p. 185. https://doi.org/10.1016/S0360-3199(00)00062-8
  2. J. E. Funk, R. M. Reinstrom, "Energy Requirements in the Production of Hydrogen from Water", Ind. Eng. Chem. Proc. Des. Develop., Vol. 5, No. 3, 1966, p. 366. https://doi.org/10.1021/i360020a017
  3. S. Kasahara, G. J. Hawng, H. Nakajima, H. S. Choi, K. Onuki, and M. Nomura, "Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water", J. Chem. Eng. Japan, Vol. 36, No. 7, 2003, p. 887. https://doi.org/10.1252/jcej.36.887
  4. S. Kasahara, S. Kubo, K. Onuki, and M. Nomura, "Thermal efficiency evaluation of HI synthesis/ concentration procedures in the thermochemical water splitting IS process", Int. J. Hydrogen Energy, Vol. 29, No. 6, 2004, p. 579. https://doi.org/10.1016/j.ijhydene.2003.08.005
  5. S. Goldstein. J. M. Borgard, and X. Vitart, "Upper bond and best estimate of the efficiency of the iodine sulfur cycle", Int. J. Hydrogen Energy, Vol. 30, No. 6, 2005, p. 619. https://doi.org/10.1016/j.ijhydene.2004.06.005
  6. S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, and K Onuki, "A Demonstration Study on a Closed Cycle Hydrogen Production by the Thermochemical Water-Splitting Iodine-Sulfur Process", Nucl. Eng. Des., Vol. 233, 2004, p. 347. https://doi.org/10.1016/j.nucengdes.2004.08.025
  7. A. Giaconia, G. Caputo, A. Ceroli, M. Diamanti, V. Barbarossa, P. Tarquini, and S. Sau, "Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle", Int. J. Hydrogen Energy, Vol. 32, No. 5, 2007, p. 531. https://doi.org/10.1016/j.ijhydene.2006.08.015
  8. J. H. Norman, G. E. Bensenbruch, L. C. Brown, D. R. O'Keefe, and C. L. Allen, "Thermochemical water-splitting cycle: Bench scale investigations, and process engineering", GA-A16713, 1982.
  9. N. Sakaba, S. Kasahara, K. Onuki, and K. Kunitomi, "Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR", Int. J. Hydrogen Energy, Vol. 32, No. 17, 2007, p. 4160. https://doi.org/10.1016/j.ijhydene.2007.06.005
  10. K. Y. Lee, H. G. Kim, K. D. Jeong, and C. S. Kim, "$SO_2/O_2$ Separation Process with EMIm[$EtSO_4$] in SI cycle for the Hydrogen Production by Water splitting", Trans. of the Korean Hydrogen and New Energy Society, Vol 22, No. 1, 2011, p. 13.
  11. K. Y. Lee, K. H. Song, K. S. Yoo, H. G. Kim, K. D. Jeong, and C. S. Kim, "$SO_2/O_2$ Separation with [DMIm]$MeSO_4$ In IS Cycle", Trans. of the Korean Hydrogen and New Energy Society, Vol. 19, No. 1, 2008, p. 49.
  12. T. H. Kim, C. H. Shin, O. S. Joo, and K. D. Jeong, "$SO_3$ Decomposition Catalyst in SI cycle to Produce Hydrogen", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22. No. 1, 2011, p. 21.
  13. P. Zhang, S. Z. Chen, L. J. Wang, T. Y. Yao, and J. M. Xu, "Study on a lab-scale hydrogen production by closed cycle thermo-chemical iodine-sulfur process", Int. J. Hydrogen Energy, Vol. 35, No. 19, 2010, p. 10166. https://doi.org/10.1016/j.ijhydene.2010.07.150
  14. W. C. Cho, C. S. Park, K. S. Kang, C. H. Kim and K. K. Bae, "Conceptual design of sulfur-iodine hydrogen production cycle of Korea Institute of Energy Research", Nucl. Eng. Des., Vol. 239, No. 3, 2009, p. 501. https://doi.org/10.1016/j.nucengdes.2008.11.017
  15. M. B. Richards, A. S. Shenoy, L. C. Brown, R. T. Buckingham, E. A. Harvego, K. L. Peddicord, S. M. M. Reza, and J. P. Coupey, "$H_2$-MHR Pre-Conceptual Design Report: SI-Based Plant; $H_2$-MHR Pre-Conceptual Design Report: HTE-Based Plant", GA-A25401, 2006.
  16. H. S. Kim, D. W. Hong, S. J. Han, Y. H. Kim, C. S. Park, and K. K Bae, "The Phase Separation Characteristics of Bunsen Reaction with $HI_x$ solution in Sulfur-Iodine Hydrogen Production Process", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 6, 2010, p. 479.
  17. S. J. Han, H. S. Kim, B. T. Ahn, Y. H. Kim. C. S. Park, K. K. Bae, and J. G. Lee, "The Effect of $SO_2-O_2$ Mixture Gas on Phase Separation Composition of Bunsen Reaction with $HI_x$ solution", Trans, of the Korean Hydrogen and New Energy Society, Vol. 23, No. 5, 2012, p. 421. https://doi.org/10.7316/KHNES.2012.23.5.421
  18. H. S. Kim, Y. H. Kim, S. J. Han, C. S. Park, K. K. Bae, and J. G. Lee, "Continuous Bunsen reaction and simultaneous separation using a counter-current flow reactor for the sulfur-iodine hydrogen production process", Int. J. Hydrogen Energy, Vol. 38, No. 14, 2013, p. 619.
  19. L. C. Brown, G. E. Bensenbruch, R. D. Lentsch, K. R. Schultz, J. F. Funk, P. S. Pickard, A. C. Marshall, and S. K. Showalter, "High efficiency generation of hydrogen furls using nuclear power", GA-A 24285, 2003.
  20. W. Henry, "Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures". Phil. Trans. R. Soc. Lond., Vol 93, 1803, p. 29. https://doi.org/10.1098/rstl.1803.0004
  21. G. W. Greenwood, "The Solubility of Gas Bubbles", The J. Material Science, Vol. 4, No. 4, 1969, p. 320. https://doi.org/10.1007/BF00550401
  22. S. D. Hong, C. H. Kim, J. G. Kim, S. H. Lee, K. K. Bae, and K. J. Hwang, "HI Concentration from $HI_x$ (HI-$H_2O-I_2$) Solution for the Thermochemical Water-Splitting IS process by Electro-Electrodialysis", J. Ind. Eng. Chem, Vol. 12, No. 4, 2006, p. 566.