• Title/Summary/Keyword: investigations

Search Result 4,875, Processing Time 0.042 seconds

FEEDFORWARD NEURAL NETWORKS AND SEPARATION OF GEOMETRIC REGIONS

  • PARK, KYEONGSU
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.271-279
    • /
    • 2019
  • We investigate how a feedforward neural network works to separate a geometric region from its complement. Our investigations are restricted to regions in ${\mathbb{R}}$ or ${\mathbb{R}}^2$ including an interval, a triangular region, a disk and the union of two disjoint disks. We also examine what happens at each layer of the network.

GENERALIZED ALTERNATING SIGN MATRICES AND SIGNED PERMUTATION MATRICES

  • Brualdi, Richard A.;Kim, Hwa Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.921-948
    • /
    • 2021
  • We continue the investigations in [6] extending the Bruhat order on n × n alternating sign matrices to our more general setting. We show that the resulting partially ordered set is a graded lattice with a well-define rank function. Many illustrative examples are given.

COMBINED ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS FOR LWR CONTAINMENT PHENOMENA

  • Allelein, Hans-Josef;Reinecke, Ernst-Arndt;Belt, Alexander;Broxtermann, Philipp;Kelm, Stephan
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • Main focus of the combined nuclear research activities at Aachen University (RWTH) and the Research Center J$\ddot{u}$lich (J$\ddot{U}$LICH) is the experimental and analytical investigation of containment phenomena and processes. We are deeply convinced that reliable simulations for operation, design basis and beyond-design basis accidents of nuclear power plants need the application of so-called lumped-parameter (LP) based codes as well as computational fluid dynamics (CFD) codes in an indispensable manner. The LP code being used at our institutions is the GRS code COCOSYS and the CFD tool is ANSYS CFX mostly used in German nuclear research. Both codes are applied for safety analyses especially of beyond design accidents. Focal point of the work is containment thermal-hydraulics, but source term relevant investigations for aerosol and iodine behavior are performed as well. To increase the capability of COCOSYS and CFX detailed models for specific features, e.g. recombiner behavior including chimney effect, building condenser, and wall condensation are developed and validated against facilities at different scales. The close connection between analytical and experimental activities is notable and identifying feature of the RWTH/J$\ddot{U}$LICH activities.

Response of triceratops to impact forces: numerical investigations

  • Chandrasekaran, Srinivasan;Nagavinothini, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.349-368
    • /
    • 2019
  • Triceratops is one of the new generations of offshore compliant platforms suitable for ultra-deepwater applications. Apart from environmental loads, the offshore structures are also susceptible to accidental loads. Due to the increase in the risk of collision between ships and offshore platforms, the accurate prediction of structural response under impact loads becomes necessary. This paper presents the numerical investigations of the impact response of the buoyant leg of triceratops usually designed as an orthogonally stiffened cylindrical shell with stringers and ring frames. The impact analysis of buoyant leg with a rectangularly shaped indenter is carried out using ANSYS explicit analysis solver under different impact load cases. The results show that the shell deformation increases with the increase in impact load, and the ring stiffeners hinder the shell damage from spreading in the longitudinal direction. The response of triceratops is then obtained through hydrodynamic response analysis carried out using ANSYS AQWA. From the results, it is observed that the impact load on single buoyant leg causes periodic vibration in the deck in the surge and pitch degrees of freedom. Since the impact response of the structure is highly affected by the geometric and material properties, numerical studies are also carried out by varying the strain rate, and the location of the indenter and the results are discussed.