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THE BRUHAT ORDER OF GENERALIZED ALTERNATING SIGN
MATRICES AND ITS RANK

Hwa Kyung KiMm

ABSTRACT. We continue the investigations in [7] extending the Bruhat order on
n X n alternating sign matrices to a more general setting. We show that the resulting
partially ordered set is a lattice and also investigate its rank.

1. INTRODUCTION

An n x n alternating sign matriz (abbreviated to ASM) is a (0, £1) matrix such
that, ignoring 0’s, the +1’s and in each row and each column alternate beginning
and ending with +1. The origins and properties of ASMs can be found in [1].

In [7] a generalization of alternating sign matrices was defined as follows: Let u =
(ur,ug, ... up),u’ = (W), ub, ... ul),v = (v1,v2,...,0y), and v/ = (v],v),...,0],)
be vectors of £1’s. If A is an m X n matrix, we define A(u,u |v,v") to be the
(m + 2) x (n + 2) matrix (1.1) with rows indexed by 0,1,...,m + 1 and columns
indexed by 0,1,...n + 1.

0 || UL U2 Up—1 Up || 0

U1 v)

Vo v

(1.1) A(u,u’|v,v') = A
Um—1 U1

Um v

0 [[uf wh -+ wf_y u,]] O

We then write A = A(u,u'|v,v")[1,2,...,m|1,2,...,n] to denote that A is the middle
m x n submatrix of A(u,u |v,v"), and also denote this by A(u,u/|v,v") = A.

A (u,u|v,v")-ASM is an m x n (0,+1)-matrix A as in (1.1) such that, ignoring
0’s, the +1’s and —1’s in rows 0,1,2,...,m + 1 and columns 0,1,2,...,n + 1 of
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the (0, £1)-matrix A(u, v |v,v") alternate. Thus the condition that the first and last
nonzero entry in rows and columns of an ASM is +1 is relaxed, where now the
first and last nonzero of each row is determined by v and v/, respectively, and the
first and last nonzero of each column is determined by u and v/, respectively. Note
also that, unlike ASMs, the first and last rows and columns of a (u,u|v,v")-ASM
depend on u,u’,v,v" and so may contain more than one nonzero entry. We denote
the set of (u,u'|v,v")-ASMs by Ay, n(u, v |v,v"). If u =" and v =" and m = n,
we often abbreviate these notations to: (u,v)-ASM and A, (u,v), respectively. If
u =1 = v =1, we also use the abbreviations (u)-ASM and A, (u). Observe that
ifu=v=v=v = (-1,-1,...,-1), then a (u)-ASM is an ordinary ASM, and
Ay, (u) is the usual set A,, of n x n ASMs.

Example 1.1. Let m = 2 and n = 3, and let v = (1,-1,1), «' = (-1,1,-1),
v=(1,-1) and v = (1,-1). Then a (u,u|v,v")-ASM is given below:
0] 1 -1 1] 0
1f-1 1 -1 1 [—1 1—1]
-1 1 -1 1 —1 1 -1 1
off-1 1 —1] 0

In [7], necessary and sufficient conditions are given for the nonemptiness of

Apn(u, v v, v). Let u = (ug,ug, ... up),u’ = (uf,uh, ... ,ul),v = (v1,02,...,0m),
and v = (v],vh,..., v),) be vectors of +1s. We define m-vectors r*(v,v’') =
(ri,ra ... rh)yand r=(v,0v') = (r{,75,...,7), and n-vectors ¢ (u,v’) = (¢, cf, ..., ¢)
and ¢ (u,u’) = (¢, ¢5,...,¢,) as follows:

r =1 (v,0') is the number of i < k such that v; = v} = +1;

rk_ =1, (v,v") is the number of i < k such that v; = v} = —1;

¢ = ¢ (u, ') is the number of j < such that u; = u; = +1; and

¢, = ¢; (u,u’) is the number of j <1 such that u; = v} = —1.

In particular, we have:

rt =1}t (v,0) is the total number of ¢ such that v; = v} = +1;
/

T = T (v,0) -
¢t = ¢f (u,u') is the total number of j such that u; = v, = +1; and
n )

= ¢, (u,u

is the total number of ¢ such that v; = v; =

/
J
c is the total number of j such that u; = u} —1.

(1.2) ro(v,0) =t (v, ) = ¢, (u,v) — cf (u, ).
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We set
ut ={j:u; =+1} and u” = [{j : u; = 1},
vt ={i:v; =41} and v~ = |{i : v; = —1}].
If we consider the sum of the first k rows of (u,u|v,v")-ASM, then we obtain
(1.3) —ut <rp () —rf)<um (k=1,2,...,m).
In a similar way, we obtain
(1.4) —vt < (u, ) —¢f (u,u) <vm (1=1,2,...,n).
In [7], a (u,u'|v,v")-ASM exists if and only if (1.2), (1.3), and (1.4) hold. In this
paper we primarily consider A(u,u’|v,v") where (1.2), (1.3), and (1.4) hold.
For any m x n matrix A = [a;;], the sum-matriz X(A) = [0;5] of A is the m xn

matrix where

o =0i(A) =Y am (1<i<m,1<j<n),
E<i I<j
the sum of the entries in the leading 7 x j submatrix of A. Define o;; = 0 if i = 0 or

j = 0. Then the matrix A is uniquely determined by its sum-matrix ¥(A), namely,
aij =05 — 0 j—1 — 0i—1j +0im1j-1 (1 <i<m,1 <5 <n).

The sum-matrix X(A) = [0y;] of a matrix A € A(u,u|v,v") has the following prop-

erties which are easily verified:

e The integers in row 7 and column j of ¥(A) are taken from the set {0, £1, £2,...};

moreover, o;; € {0,—v;} and o1; € {0,—u;} so that o5 € {0,£1} for
1 <i<mand oy €{0,%£1} for 1 <j <n.

e Consecutive entries in a row or column differ in absolute value by at most
1.

e gipp=—(v1+va+---+uv) forl <i<m.

e opj=—(ur+ug+---+u;) for 1 <j<n.

Example 1.2. Let u =« = (1,—-1,1,—-1,1) and v = v = (1,—1,1). For

-1 0 0 0 0]-1
A= 1{-1] 1 € Az 5(u,v), we have X(A)= 0| 1| 0| 1] O
-1 -1 0] -1 0]-1

In the next section we generalize the Bruhat order on the set A, of n x n ASMs
to the set Ay, ,(u, v'|v,v"). As with A,, we obtain a ranked lattice. In [8], we have

Ay (u,v) is a ranked lattice where A, (u,v) denote Ay, n(u,u'|v,v") for v = o' =
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(uy,ug,...,uy) and v = v' = (vy,vs,...,v,) which are vectors of +1’s where u and

v have the same number of +1’s and the same number of —1’s.

2. BRUHAT ORDER AND LATTICE

There is a partial order, called the Bruhat order and denoted by =<p, defined
on the set S, of permutations of {1,2,...,n}, equivalently, the set P, of n x n
permutation matrices, which has also been extended to the set A, of n x n ASMs

[10]. We briefly describe this partial order in its various equivalent forms [8].

(i) For m,7 € S,,, # <p 7 provided 7 can be obtained from 7 by a sequence of
transpositions each of which reduces the number of inversions, not necessar-
ily the set of inversions. There is such a sequence of transpositions each of
which reduces the number of inversions by exactly one (but not, in general,
by removing one inversion). The identity ¢, = (1,2,...,n) (the identity
matrix I, using P, ) is the unique minimal permutation in the Bruhat order
on Sp; the anti-identity ¢, = (n,...,2,1) (the anti-identity matrix L,, using
Pp) is the unique maximal permutation. In terms of permutation matrices,
for P,Q € P,, P <p Q if and only if P can be obtained from @ by a
sequence of interchanges involving 2 x 2 submatrices (not necessarily with

consecutive rows and consecutive columns):

ol lev]

(ii) Another characterization of the Bruhat order is: For P,Q € P,,, P <p Q if
and only if ¥(P) > 3(Q) (entrywise).

(iii) The Bruhat order extends to .4, by defining for Ay, A3 € A,,, A1 <p Az pro-
vided that ¥(A;) > X(Az). Then (A,,=<p) is a graded lattice extending the
partially ordered set (P, <p), and indeed is the (unique up to isomorphism)
smallest lattice extending (P,, =<p) (the Dedekind-MacNeille completion of
(Pn,=<p)) [10]. The minimal element of (A,,=<pg) is I,, and the maximal
element is L,,.

(iv) For Ay, Ay € A,,, A1 <p Ay if and only if there is a sequence of ASMs, X; =
A1, Xa,...,X, = Ay, such that for t = 1,2,...,p — 1, X; can be obtained
from X;;1 by an interchange which adds T where the 2 x 2 submatrix



(vi)

(vii)
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Ti,jlk,1] (i < j,k <) of T is the 2 x 2 matrix

1 -1
-1 1
and all other entries are zero. In order that the resulting matrices be ASMs,
the 2 x 2 submatrix of X;1; must equal
OQor—1| Oor1l
Oorl [Oor—1 |

An interchange is the analogue for ASMs of a interchange of a permutation

matrix.
Let P,QQ € P,. The weak Bruhat order <, on P, is defined by P =<; Q

provided P can be obtained from @ by a sequence of adjacent interchanges

0 1 10
a]=[o 0]

applied to 2 x 2 submatrices with consecutive rows and consecutive columns.
Since interchanges reduce the number of inversions of the corresponding
permutations by exactly 1, (P, <p) is a subpartially ordered set of (P, <p)
and, in fact, (P, <p) is a lattice. This lattice can be equivalently described
in terms of the corresponding permutations in S,, as follows: For 71,7 € S,
m1 =p o if and only if the set inv(7;) of inversions of 7 is a subset of the
set inv(mg) of inversions of my. In general, inv(m;) N inv(mg) is the set of
inversions of a unique permutation m A me, the meet of m1 and my, and
inv(my) U inv(ms) is the set of inversions of a unique permutation 71 V 7o,
the join of m and mo [2].

Let A1, As € A,,. The weak Bruhat order < on A,, can be defined by writing
Ay <p As provided Ay can be obtained from Ay by a sequence of adjacent
interchanges each of which adds to a 2 x 2 submatrix As[i, 7 + 1|j,j + 1] of
Ay with consecutive rows and columns, the n x n matrix T; ; which is all 0’s

except for its 2 X 2 submatrix determined by rows ¢ and ¢ + 1 and columns

1 -1
-1 1
and where the result is also an ASM. Unlike for P,,, the Bruhat order and

weak Bruhat order coincide on A,,.

7 and j + 1 which equals

Let u = (u1,ug,...,uy) and v = (v1,v,...,v,) be vectors of £1’s where

w and v have the same number of +1’s and the same number of —1’s. Let
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Ay, As € Ay(u,v). The weak Bruhat order =<j on A, (u,v) can be defined
by writing A; =<3 Ao provided A; can be obtained from A5 by a sequence
of adjacent interchanges each of which adds to a 2 x 2 submatrix As[i,i +
1|7,7 4+ 1] of Ay with consecutive rows and columns, the n x n matrix T; ;
which is all 0’s except for its 2 x 2 submatrix determined by rows ¢ and ¢+ 1

and columns j and j + 1 which equals

.

and where the result is also an element in A, (u,v).

These and other properties of ASMs can be found in several places including [2, 3,
4,5,6,7,8,9, 10].

Let u = (u1,ug,...,u,),u

= (u),uh, ... ul),v = (vi,v2,...,0y), and v =

(v}, vh,...,v},) be vectors of £1’s. There is a partial order, called the Bruhat or-

rrm

der and denoted by <p, on A, n(u,v[u/,v") of (u,u'|v,v")-ASMs. There are three
possibilities for defining Ay <p As for A, Ay € Ay n(u, v/, v"), namely:

(a) X(A;1) > X(Az) (entrywise).
(b) Aj can be obtained from As by a sequence of interchanges.

(¢) Aj can be obtained from As by a sequence of adjacent interchanges.

We will prove that these three possibilities are also equivalent for A, ,, (u, v|u’,v"). If
A can be obtained from As by a sequence of adjacent interchanges, then we denote
AQ — Al.

Example 2.1. Let v = (—-1,1,1,1,-1), «' = (-1,-1,—-1,—1,-1) and v = o' =
(—1,—1). Let

Ol —[+|+[+[=]0 Ol —|+[+[+[-]0
— i and Ay s —— -
Off-T-T-T-T-T0 O =T-T-T=-T-T0

A12

Since X(A1) > X(Ag), A1 <p Ag by definition (a). Also, A; can be obtained from

As by a sequence of adjacent interchanges such as;
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U e M el el OB M e el |
a ] [ SRS £ S
Of =T+T+]+]-10 Of=[+]+]+]-10
Ol —|=]=l=1=-]0
L L+ -
— _|_ —
Of —[+]+]+]-1T0
U W e el |
H
— + —
Of =f+]+]+]-10
Ul Ml Bl Bl el
— : + T ::Al
Of—f+T+]+]-1T0
Theorem 2.2. Let u = (uy,ug,...,uy),u = (uf,uh, ... ul), v = (v1,v9,...,0m),
and v' = (v}, vh,...,v},) be vectors of £1’s. Let Ay and Ay be in Ay, (u,vu’,v") .

Then there exists unique M € Ap, n(u,v|u/,v") such that
(M) = max{X(A1),%(A2)} (entrywise mazimum).

Moreover, M can be obtained from each of A1 and As by a sequence of adjacent
interchanges, and hence M <p Aq, As.

Proof. Let Ay = [aj;], A2 = [a};] € Amn(u,u/|v,0'), and let D = [d;j] = B(A;1) —
¥(A2), an integral matrix with last row and last column all 0’s. If D = 0, then
Ay = As and there is nothing to prove. So assume that D # 0.

If u; = +1 then, since the £1’s alternate, the partial sum of column j of a matrix
in Ay, pn(u,u'|v,v") down to a row i is either 0 or —1; if u; = —1, this partial sum is
either 0 or 1. Let £ > 1 be the smallest integer such that row k of D is nonzero. Then
the following k-partial column sum property holds: The partial column sums of Ay
and Az down to row (k — 1) are equal. It thus follows that row k of D is a (0,+1)-

vector. Let [; > 1 be the smallest integer such that dy;, # 0. Then dy, = *£1,
and since we may interchange A; and A, we may assume that dy;, = +1. Let
la > 11 be the smallest integer such that dy; = +1 for [ < j <y and dj 1,41 # +1.
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Since dy, = 0, such an [y exists. The k-partial column sum property implies that
di.1,+1 = 0. Thus we have either

Case (i) ap, = aihH =+1and af;, = allc,lerl =0, or

Case (i) ay;, = ai7l2+1 =0 and af;, = al%;,12+1 = -1

We only argue the first case (i) with the argument for the second case (ii) being very
similar. So assume (i) holds.

Consider the sequences determined by columns [; and ls of As:

ull’a%llaa%ll’ s ’a%—l,llﬁ (a%,ll + 1)
and
Uly+15 a’%,lg—f—l’ a’%,lg—f—l’ s ’a’z—l,lg—f—l’ (a’%,lg—f—l - 1)'
Since a,ld1 = 1 and az,ll = 0, the +1’s and —1’s in the first of these sequences

alternate. Since a,ﬁ i1 = 0 and a% 1,41 = 1, the +1’s and —1’s in the second of
these sequences alternate. Thus there exists a g with [ < g < Il such that in the
sequences

2 2 2 2 2 2 2 2
Ugy Qg Qg - -+ 5 A1 g5 (ak‘,q +1) and ug41, 07 441> @2, g 415 - -+ Oh—1,g+1> (Ok g1 — 1)

the +1’s and —1’s alternate. We choose the smallest such gq.

Now consider the alternating sequences

2 2 2 -
(21) ’Ui,az‘l,azg, P ,a/l'q fOI‘ (3 > k

Suppose that the last nonzero entry each of these sequences is —1 for all ¢ > k. Then

for each such i we compute

dig = X(A1)ig — X(A2)ig

q
= [ S+ Y al | = | Z(A2)icig+ D af
j=1

q
= (B(A1)i—1,4 — B(A2)i—1,4) + Z aj; — Z az;

q

q
o 1 2
= dH,q+§ ajj E agj-
j=1 j=1

Since the last nonzero of each of the sequences (2.1) is —1, we have that
q

q

1 2

E aijz E ajj-
J=1

j=1
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Therefore d;; > d;_1 4 and so the sequence dq, djy1,q, - - - , dng is nondecreasing. This
contradicts the fact that dy, = 1 and dpq = 0. Let p(> k) be the smallest integer
such that the last nonzero of the sequence Up+1’a;2)+1,1’ %2>+1,2’ . ’a127+1,q is +1 and
let Al = Ay + T, ,, where T, is the matrix which is all zeros except for its 2 x 2

submatrix, determined by rows p and p + 1 and columns ¢ and g + 1, equal to

1 -1
-1 1|
Then A} € Ay, pn(u,v|u/,v') such that D — (X(A;) — $(A3)) has just one nonzero
entry +1.

As already indicated, Case (ii) proceeds in a very similar way. Thus continuing,
we obtain for some ki and ko, that there are adjacent interchanges A; — A% — A% —
AN and Ay — A - A2 — - AR with AP = AR and n(4AF) = B4k =
max{3(A;), X(A2)}(entrywise). O

Example 2.3. Let A and B be determined, respectively, by:

ORI e e el e O I e e e |
+ — + || — + || =
- + |- + and — ||+ 1+
— || + — | + — — + || —
+ — |+ | = + —
Off=[+]+[+][-10 Off=[+1+[+[-10
Then we have
0|{0j0f1]|1 111111
00011 000|001
YA)=10j0|1]|1|1|,E¥B)=|1|1]|1]1|1],
11111122 1(111|1]2
1(111|1]2 1(111|1]2

and

I

\g|

—~

N

~—

|

\g|

—~

W

~—

I

|

—_

|

—_
jen] Nen) Nen) Nan) i o
(el Bl Nenl i Naw]
[ev] Hen] Nen) Nan) Haw]
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First, we find the first nonzero row in D:

—1(-11-1 0 0
0 0 0 1 0
D=1| —-1]| -1 0 0 0
0 0 0 1 0
0 0 0 0 0
Then for Kk =1 we can find ¢ =3 and p=1 in A.
0 =1 [-1-|-]o
—_ + —
_|_ —
- e ¥
n — [+ =
of-[+[+]+]-10
Then we have A+ T3 = Ay € As5(u, v|v/, ") such as
0 -1-|-|-l-Jo  of-[-]-|-|-Jo
n - T BE: =
- e + o+ = +
n —TF = + =
o -[+[+[+[-T0 Of-T+[+]+]-10
0l -[-[-[-]-]0O
—_ + —_
¥ |+ -
= = + = T
T —[+[=
Of-[+[+]+]-10

(»,9)

If we denote A+ T, , = A1 by A —= A, then we have

and

4 !

173)

Al (1,2) AQ (1,1) A3,

B %Y B

As (3.2) A, (31

B, Y4 B,

A57
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where A5 = By such as

U el el el Bl el |
— + —
+ - + -
-+ - + .
— _|_ —
+ -1+ -
Off =]+[+[+]-10

Therefore we have AV B = As = Bs.

Corollary 2.4. The three possibilities (a), (b), and (c) are equivalent for Ay, »(u, v|u',v")
and each defines the Bruhat order < on Ap, n(u,v|u’,v").

Proof. Let A1, Ay € Apy p(u,v|u/,v") with £(A;) > X(Az). Then max{X(A4;),3(Az)} =
(A1), and by Theorem 2.2 A; can be obtained from Ay by a sequence of adjacent
interchanges. The corollary now follows from the discussion preceding Theorem
2.2. U

Note that this corollary implies that, as with ordinary ASMs, there is no difference

between the Bruhat order and the weak Bruhat order on A,, ,(u,v|u,v").

Corollary 2.5. The partially ordered set (Apy,n(u,vlu’,v"),<p) is a distributive

lattice where for A1, Ay € Ap n(u,v|u’,v"), the meet and join are given by

(i) AiNAg = B where B € Ay, n(u, vt ,v") such that £(B) = max{X(A;), X(A2)}.
(i) A1VAy = C where C € Ap, p(u,v|u',v") such that £(C) = min{3(A;), X(A2)}.

Proof. By Theorem 2.2 A,, ,(u,v|u/,v") has a well-defined meet and assertion (i)
follows. Assertion (ii) can be obtained from the analogue of Theorem 2.2 with
minimum replacing maximum; it also follows from the fact that A,, ,(u,v|u’,?’) is
finite and so the existence of joins follows from the existence of meets.

In order that (A, »(u,v|u',v"), <p) be distributive, we must have
Al N (A2 V A3) = (A1 vV Ag) A (A1 V A3)

for all Ay, Ay, Az € Ay, pn(u,v|e,v"). The distributive property for the real numbers
with the usual < order relation holds trivially. It then follows from (i) and (ii) that
(Apn(u, v[e,v"), <) is also distributive. O
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+
+ +
+- |+ - + |-
— - -+
+ +-1+ +
+ -]+ + - + |-
-+ ]- - +
+ =T+ + + =T+
+ +- |+ + -
— -
-1+ + +-T+
+ + -
+ +

Figure 1: Hasse diagrams of Xy and /Cs.

In [8], we have the (u, v)-identity matrix I,,(u,v) is the unique minimal element in
Ay (u,v), and the (u,v)-anti-identity matrix L, (u,v) is the unique maximal element
in A, (u,v). We know that there is the unique minimal element I, ,,(u,v|u,v") and
the unique maximal element Ly, ,(u,v|v/,v") in Ay, p(u, v|e/, v"), but do not charac-
terize I, 5 (u, v|t/,v") and Ly, »(u, v|u’,v") yet. For amatrix A € Ay, ,,(u, v[u/, '), let
p'(A) equal the sum of the entries of 3(A), and let p(A) = p'(In (u, v|u/, V")) —p'(A).
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Lya(u,vlu,v')

/N

Ag1 Ago

- +

Figure 2: Hasse diagram of (A4 4(u,v|u',v"),<p)

171
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A1 Aiz Ais Ai1g
[+ -1 [+ -1 [+ -1 T + -
¥ ¥ ¥ ¥
- ¥ - ¥ —1 T
- ¥ - ¥ - ¥ - ¥
_ AZl _ _ AZZ _ _ A23 _ _ A24 _
+ - + - + - + -
¥ ¥ ¥ ¥
- ¥ —F —F - ¥
— T - ¥ = ¥ - ¥
-~ Azs ] -~ Aze ] -~ Az ] . As2 ]
+ - + - + - + -
¥ T 1T ¥ ¥
- ¥ T F 1T
- ¥ - ¥ — T - ¥
Ass Aszq Ass Ase
I + -1 T + -1 T + =] + | =
¥ =1+ =1+ ¥
= ¥ — ¥ — ¥
1T - ¥ - ¥ - ¥
~ Aq _ ~ Ag2 _ ~ Az _ -~ Aga _
+ - + - + - + -
¥ ¥ T 1T T ¥
— = = ¥ e
— = — = = ¥
-~ Aus ] -~ Aue ] -~ Aar ] . As1 ]
+ - + |- + |- + -
¥ ¥ ¥ ¥
—1 T —1 T - ¥
- ¥ - ¥ - ¥
A52 A53 A54 A55
I + -1 T + -1 T + -1 T + | =]
- F - ¥ ¥ ¥
- ¥ —F —F
1T — T - ¥
-~ Ase ] -~ As7 ] -~ Ae1 ] . A2 ]
+ |- + |- + - + -
¥ ¥ —1 T T ¥ ¥
— - = ¥ - ¥
— = - ¥
-~ Aes ] -~ Aesa ] -~ Aes ] -~ Ass ]
+ - + |- + |- + |-
¥ ¥ ¥ ¥ —1 T
—1 T - ¥ —F
1T — T — 1T
Ae7 Ar Ara Ars
[ ] [ + — ] [ + | = ] [ + | = ]
¥ ¥ ¥ ¥ — ¥
— ¥ = ¥ = ¥
- ¥
Ay Avs _ As1 _ _ Asz -
+ |- + |-
T 1T ¥ T 1T ¥
— ¥ — = = ¥
— = —F
Ass Aoy -~ Ag2 ]
+ —
¥ ¥ ¥
—1 =
1T

Corollary 2.6. The partially ordered set (Ay,n(u,vlu’,v"), <p) is a graded lattice
where the rank of A € (Amn(u,v|u',v"), <p) equals p(A).
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Proof. By Corollary 2.5 (A, (u,vu’,v"), <p) is a lattice. Let Ay, Ay € Ay pn(u, v
u',v") where Ay covers Ay. Then 3X(A;) — X(A3) > 0 and A; A Ay = A;. By
Theorem 2.2, A; can be obtained from A, by a sequence of adjacent interchanges.
Each interchange increases the sum of the entries of the corresponding >-matrix
by 1 and gives a matrix A’ € A, ,(u,v|u’,v") with 4; <p A" <p Ay. Since Ay
covers Aj, we have that A; = A’ and p'(A1) = p/(A2) + 1. Hence A; can be
obtained from As by one adjacent interchange and p(A;) = p(Az) — 1. Hence
(A (u,vu,v"), <) is graded with rank function p(-) where p(IL, »(u, v|u’,v")) =0
and p(Lp pn(u, v, 0") = p' (I n(u, vt ,0") = p' (L (u, v, 0")). O

Example 2.7. Let

K1 = (A33(—1,+1,-1),=B)
and

Ko = (As3(u,v|u’,v"), <p)
where

uw=(-1,-1,41),v = (=1,+1,-1),' = (—1,+1,-1),v" = (+1,-1,-1).
Then we have
p(K1) = p(Ks) = 4

and Hasse diagrams of K1 and K9 are Figure 1.

Hasse diagram of K; is isomorphic to Hasse diagram of (A3, <p) in [8], but Hasse

diagram of Ky is not isomorphic.
Let
u=(-1,-1,-1,41),v = (=1, =1, +1,+1),u' = (+1,+1,-1,-1)
and
v = (+1,-1,-1,-1).
Then we have
(Aga(u,vlu,0v"), <p)
as Figure 2. Also we have
p(Aga(u,v|u’,v")) =10 = p(Ay)

and
|A474(uav|ul’vl))| =49 7& 42 = |A4| :
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3. RANK OF THE LATTICE (A,,,(u,v|u,v"), <p)

Let p(-) denote the rank function of the graded lattice (A, ,,(u,v|u’,v"), <p). Let
Ly n(u,v[e,v") and Iy, n(u,vju’,v") the unique maximum element and the unique
minimum element of this lattice, respectively. The rank of the lattice (A, »(u, v|u',v"), <p
) equals p(Ly, pn(u,v|u’,v")). Moreover, for A € Ay, »(u,v|u’,v"), we have

p(A) = p'(Imn(u,v)) = p'(A) = p/ (I n (u, v) — A)
where recall that p'(-) denotes the sum of the entries of X(-). We have p(A,,) = (”;1),
see e.g. [4].
/

Theorem 3.1. Let u = (uj,ug,...,uy),u = (uj,uh, ... ul), v = (v1,v2,...,0m),

and v' = (vi,vh,...,v],) be vectors of £1’s. Suppose m < n. Then we have

Lm—=1)(m+1)(3n—m), if m odd,
P( Ao (u, vl ")) <
Lm(3mn —m? —2), if m even
Proof. Let p'(A) equal the sum of the entries of ¥(A) and p(A) = p'(Ln(u, v|u',v"))—
p'(A) for A € Ay, (u,v|t/,0v"). Let D(A) = [di;] = £(A) — Z(Lmn(u,v|u/,v")). Then
we have for each integer 7,7 such that 1 <i<mand 1 <j <n,

(1) dij >0,

(2) din, = dpmj =0,
(3) di = dy; € {0,1},
(4) [dij — dij41] <1,

Therefore we have

(1 1 1 11 1]|0]

1 2 2 2 2 110

1 2 3 32 1|0

< D¥=[J*1=| + + S
D{4) < b* = |djj 1 2 3 32 1|0
1 2 2 2 2 110

111 11 1/0

00 0 00 0]0

Therefore p(A) =3 di; <> d;;.
Case (i) m is odd.
p(A) <> dfy = (m=1Dn-1)+m=-3)(n—3)+...+2-(n—m+2)
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= §2k-(n—m+2k)
k=1
= i{4k2+2k(n—m)}
k=1
_ (m?>—1)m  (m?—1)(n —m)
6 4
m? —
_ 121(3m—m):1—12(m—1)(m—|—1)(3n—m)
Case (ii) m is even.
p(A)§dej = m-1n-1)+m-=3)(n—-3)+...+1-(n—m+1)

= N @k-1)(n—m+2k—1)
k=1

SEA|

= > {4’ +2k(n—m—2)+ (-n+m+1)}

B
Il

1
m(m+2)(m+1) mm+2)(n—m-—3) m(—n+m+1)
6 * 4 + 2

= %(3mn —m?—2)

Therefore we have the result. O
Corollary 3.2. Let u = (uy,ug,...,up),u’ = (u),uh,...,ul,),v = (v1,v2,...,0,),
and v' = (vi,vh,...,v}) be vectors of £1’s. Then we have

p(Apn(u,vfu ")) < <n ;— 1).

Proof. If n is odd, then we have by Theorem 3.1,

1
12

(n—1)(n+1)(3n —n) = LD =2) (”“).

p(An7n(u,v|u/,v/)) < 6

If n is even, then we have by Theorem 3.1,

n

12(3n2—n2—2) =

p(Apn(u,v|u ")) < (n—Dn(n—2) _ (n + 1>.

6
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4. CLOSING REMARKS
In this paper, we extend the result in [8] to a more general situation. We show
another example of the lattice (Aga(u,v|u’,v"),<p) for v = v = (+1,—-1,+1,—1)
and v’ = v = (—=1,+1,—1,+1) in Figure 3.

Iy g(u, v/, v") =

- +

Figure 3: Hasse diagram of (Ay4(u,v|u’,v"), <p)
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A1 A21 A2z Azs
+ -1 [+ -1 [+ -1 [+ =]
— ¥ — ¥ - ¥ - ¥
= ¥ = ¥ =
- ¥ — I =1 - ¥ - ¥
Azg ] -~ Az ] -~ As2 ] -~ Ass ]
4=+ |- + - + - -+ -
- ¥ - ¥
- - T
= ¥ -1 e e
Asy -~ Ass ] -~ Asg ] Asn
+ - - R + -
- ¥ — ¥ — 1= 11+
¥ - ¥ - ¥ -
- ¥ - ¥ - ¥ — 1=
Az Aus Asq Ass
+ -1 [+ -1 [+l =1+1-7 [+l =]+]-1]
= ¥ = ¥ —F — =
e - -
e — ¥ e I =1~
Ause ] -~ Augr ] -~ Aus ] -~ As1 ]
+ |- =+ |- + |- + -
T -1= - ¥
¥ - ¥ = ¥ - -
- ¥ = ¥ = ¥ — =
Asa ] -~ Ass ] -~ Asa ] -~ Ass ]
e + - + |- R
— 1= - ¥ T -1=
= = T+ 1=
— 17 — ¥ e e
Ase As7 Ass Aso
|-+ -7 [ +]- T T +1-7 T + 1 -1
— — = —F
¥ = = ¥ =
= = ¥ == = ¥
As1 ] -~ As2 ] -~ Aes ] . Asa ]
4=+ |- + - + |- -+ |-
T == - ¥ e
= =
— ¥ = — =
Aes ] -~ Ace ] -~ Ae7 ] -~ Aes ]
Fl =]+ - + | - + | -
- ¥ — ¥
¥ - T+ 1= ¥ -
e e — ¥ - ¥
Aeo Ar Ara Ars
+ -7 [ +l=1+]-7 [+l=1+1=-7 [ +]- )
— = -+ = ¥ — =
e ¥ = -
— T = F — ¥ — ¥
Ara ] -~ Ars ] -~ Az } -~ Arr }
4=+ |- + |- + |- + |-
- ¥ -7 — ¥ — ¥
¥ - 1= = =
— = —F — = —F
Ars Arog Az 10 As1
¥ - 1T -1 T T ;
- ¥ - ¥ — ¥
¥ - ¥ - T+ 1=
e e e
As2 _ -~ Ass _ ~ Asa _ ~ Ass _
-+ |- + |- + |- + |-
= ¥ — T = ¥ = ¥
- ¥ = ¥ =
— ¥ — T
Ase ] -~ As7 ] -~ Ass ] -~ Aso ]
+ |- + |-
- ¥ - ¥ — ¥
¥ - ¥ - = ¥ -
— ¥ — = — = — -1
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-~ Asg 10 } Agy Aga Agz
+ ] - + | -
= + = +
= T T
-+
-~ Aoy . Aogs '
-+ -+
+ = + =
— —
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