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FEEDFORWARD NEURAL NETWORKS AND SEPARATION

OF GEOMETRIC REGIONS

KYEONGSU PARK

Abstract. We investigate how a feedforward neural network works to

separate a geometric region from its complement. Our investigations are
restricted to regions in R or R2 including an interval, a triangular region,

a disk and the union of two disjoint disks. We also examine what happens
at each layer of the network.

AMS Mathematics Subject Classification : 68T05.

Key words and phrases : machine learning, feedforward neural network

1. Introduction

A feedforward neural network [7] is an artificial neural network represented
by a sequence of functions

Rd0 F (1)

−−−→ Rd1 G(1)

−−−→ Rd1 F (2)

−−−→ · · · G
(r)

−−−→ Rdr .
The function F (i) is an affine transformation defined by

F (i)(x) = b(i) +W (i)x (1)

for a bias vector b(i) and a weight matrix W (i). The function G(i) is called an
activation function. In many cases, it acts coordinatewise, that is, it has the
form

G(i)(x1, . . . , xdi) = (g(x1), . . . , g(xdi))

for a monotonically increasing smooth function g, which is also called the acti-
vation function. A subsequence

Rdi G(i)

−−−→ Rdi

is called an internal layer or a hidden layer.
For an input vector x ∈ Rd0 , the vector

y(i) = (G(i) ◦ · · · ◦ F (0))(x) ∈ Rdi
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is called the i-th output vector. The final output vector y(r) is called simply the
output vector.

A measure of difference between an output vector and the corresponding
target vector is called the loss. Various losses are introduced in literatures.

For example, the L2 loss function is defined by

J(x) =
1

2
‖t− y(r)‖2

where t is the target vector corresponding to x. For input vectors x1, . . ., xp,
target vectors t1, . . ., tp and corresponding output vectors y1, . . ., yp, the sum

p∑
j=1

J(xj) =
1

2

p∑
j=1

‖tj − yj‖2

is called the total loss.
The main problem of this area is to determine biases and weights which

minimize the total loss locally [3]. To do it is called the optimization. An error
backpropagation method is commonly used for this [5, 6]. The method works
successfully in general, but processes are hard to understand.

In this paper, the separation of a region means that the region and its comple-
ment are classified by a network. It is expected that the separation of a geometric
region would make intermediate processes more clear and understandable. We
will separate some regions in Rn, n = 1, 2.

2. Dividing the real line

A frequently used activation function is the logistic sigmoid function [1]

σ(x) =
1

1 + e−x
,

which maps the real line R onto the unit interval (0, 1). The real line is divided
into σ−1((0, 0.5)) and σ−1([0.5, 1)), which are two intervals (−∞, 0) and [0,∞),
respectively.

The feedforward neural network

R (−aw,w)−−−−−→ R σ−→ R (2)

separates the interval [a,∞) from its complement for any w > 0. That is, outputs
of the network for inputs in (−∞, a) and [a,∞) is contained in (−1, 0.5) and
[0.5, 1) respectively.

We tested in the case a = 0. Some real numbers x1, . . ., xp were taken as
input vectors. We obtained output vectors yj = σ(wxj − wa) for all j. Then
yj ≥ 0.5 if and only if xj ≥ a.

To compute the loss, we took target vectors as

tj =

{
0, if xj < a

1, otherwise
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for all j. The larger w is, the smaller total loss 1
2

∑p
j=1 ‖tj − yj‖2 is. Hence we

obtain desired total loss by taking a sufficiently large weight w.
Now we separate the closed interval [a, b]. To do it, we construct a network

of the form

R F (1)

−−−→ R2 σ−→ R2 F (2)

−−−→ R σ−→ R

where σ acts coordinatewise. Applying the gradient descent iteration with some
initial affine transformations F (1) and F (2), we obtain final affine transformations
which optimize the network to the desired total loss.

Similar to the network (2), initial biases and weights are taken as

b(1) =

[
−aw
bw

]
, W (1) =

[
w
−w

]
, b(2) =

[
λ
]
, W (2) =

[
µ µ

]
(3)

for some nonzero w, λ and µ. Two functions F (1) and F (2) are defined as (1),
that is, F (1)(x) = (−aw + wx, bw − wx) and F (2)(x, y) = −λ+ µx+ µy.

The case a = −1 and b = 1 was implemented. 100 evenly spaced points in the
interval [−2, 2] was taken as input vectors. Applying gradient descent iterations
starting at w = 1, λ = −2 and µ = 1, biases and weights reached approximately

b(1) =

[
11.8
11.8

]
, W (1) =

[
11.9
−11.9

]
, b(2) =

[
−18.8

]
, W (2) =

[
13.0 13.0

]
.

Graphs of outputs are displayed in Figure 1. Passing through F (1) and the
first internal layer, [−1,∞) and (−∞, 1] are almost separated from their com-
plements, respectively. If we set (y1, y2) = (G(1) ◦ F (1))(−1), then

F (2)(y1, y2) = −18.8 + 13.0 y1 + 13.0 y2

is approximately zero. A similar equation holds for the input 1. In the end,
[−1, 1] is separated from its complement.

−2 −1 0 1 2
0.0

0.5

1.0

(a) the graphs of the first outputs

solid line: the 1st coordinate y
(1)
1

dashed line: the 2nd coordinate y
(1)
2

−2 −1 0 1 2
0.0

0.5

1.0

(b) the graph of the final output y(2)

as a function of inputs

Figure 1. The outputs of a network which separates [−1, 1]
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In general, any n disjoint bounded intervals can be separated. A network is
of the form

R F (1)

−−−→ R2n σ−→ R2n F (2)

−−−→ R σ−→ R.

Initial affine transformations F (1) and F (2) can be taken analogously to the
equation (3).

3. Regions in the plane

It is analogous to the above section to construct a network which separates
a half plane in R2. The bias vector and the weight matrix are determined by
the equation of its boundary. A strip bounded by two parallel lines can also be
separated similarly to the case of a interval.

A corner plane is a subset of R2 bounded by two rays with a common vertex.
A network which separates a corner plane is of the form

R2 F (1)

−−−→ R2 σ−→ R2 F (2)

−−−→ R σ−→ R.

The initial function F (1) can be taken from the equation of rays, and F (2) ran-
domly. Applying gradient descent iterations we may obtain a desired network.

In implementation, a network that separates the first quadrant was built.
Since its boundary is composed of two lines x = 0 and y = 0, initial biases and
weights were taken as

b(1) =

[
0
0

]
, W (1) =

[
1.5 0
0 1.5

]
, b(2) =

[
−2
]
, W (2) =

[
1 1

]
.

b(2) and W (2) could be taken at random, but the above values were obtained
from experiments. Evenly spaced 30 × 30 points in the square [−1, 1] × [−1, 1]
were taken as input vectors.

After several iterations, biases and weights reached approximately

b(1) =

[
0.5
0.5

]
, W (1) =

[
25.4 −0.6
−0.6 25.4

]
, b(2) =

[
−24.4

]
, W (2) =

[
16.0 16.0

]
.

The process of separating the first quadrant is displayed in Figure 2. The
function G(1) ◦ F (1) expands the spacing near the coordinate axes. Then a line
is taken by F (2) to separate first outputs.

The network does not completely separate the first quadrant because it de-
pends only on input vectors and target vectors. For example, it maps the point
(1/60, 1/60) to 0.21, which is less than 0.5.

The cross entropy [2] was tested as a loss function instead of the L2 loss
function. The intermediate process and result were not so different. The rectifier
ReLU [4] was also tested as an activation function instead of the logistic sigmoid
function. The first quadrant was also separated, but intermediate processes were
very different. The rectifier seemed more appropriate in this case.
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−1 0 1
−1

0

1

(a) input vectors
big dots: the 1st quadrant

0.0 0.5 1.0
0.0

0.5

1.0

(b) first outputs y(1)

big dots: the image of the 1st quadrant
solid line: F (2)(y(1)) = 0

Figure 2. Inputs and First outputs of a network which sepa-
rates the first quadrant

Now we separate a triangular region and a circular region from their comple-
ments, respectively. The network is of the form

R2 F (1)

−−−→ R3 σ−→ R3 F (2)

−−−→ R σ−→ R. (4)

The initial function F (1) can be taken from the equation of the triangle. We
may take the same initial function for a circular region if the boundary circle
circumscribes the triangle.

In implementation, a network that separates the triangular region bounded
by three lines

1−
√

3x− y = 0, 1 +
√

3x− y = 0, 1 + 2 y = 0

was built. And another network from the same F (1) and F (2) to separate the unit
disk was also built because the unit circle circumscribes the triangular region.
Evenly spaced 60 × 60 points in the square [−2, 2] × [−2, 2] was taken as input
vectors. Initial biases and weights were taken as

b(1) =

1
1
1

 , W (1) =

−√3 −1√
3 −1

0 2

 , b(2) =
[
−3
]
, W (2) =

[
1 1 1

]
.

After several iterations, biases and weights were reached final values with the
desired total loss.

b(1)=

20.6
20.6
16.0

 , W (1)=

−35.4 −20.6
35.4 −20.6
0.0 34.3

 ,
b(2)=

[
−49.0

]
, W (2)=

[
21.2 21.2 16.2

]
,
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for the triangular region and

b(1)=

2.2
2.2
2.4

 , W (1)=

−3.4 −1.9
3.4 −1.9
0.0 4.2

 ,
b(2)=

[
−74.7

]
, W (2)=

[
35.3 35.3 34.1

]
.

for the unit disk were obtained approximately.
The level curves of the two networks at level 0.5 are shown in the Figure 3.

A level curve of a network at level k is the inverse image of k, that is, the set of
input vectors whose output vector is k. The level curve for the triangular region
is a round triangle, and that for circular one is nearly round.

−2 −1 0 1 2
−2

−1

0

1

2

(a) separation of a triangular region
solid line: the level curve at level 0.5
dashed line: three lines F (1)(x) = 0

−2 −1 0 1 2
−2

−1

0

1

2

(b) separation of a circular region
solid line: the level curve at level 0.5
dashed line: three lines F (1)(x) = 0

Figure 3. Separation of a triangular region and a circular region

The rectifier ReLU can be used as an activation function. For the triangular
region, the result is similar to that of the logistic sigmoid function. However,
for unit disks, the level curve at level 0.5 is hexagonal. The rectifier seems to be
suitable for the region whose boundary is piecewise linear.

In general, a polygonal region can be separated from its complement. The
network is similar to the sequence (4). Since we use boundary equations to define
the initial F (1), the dimension of the first internal layer depends on the number
of sides of the boundary polygon. The interior region of a regular square was
tested. The interior region of the circle that circumscribes it was also tested.
The results were similar to those for the triangular region.

In separation of a circular region using a polygon, the more sides it has, the
better the circular region is separated. It would be natural.

An elliptical region can be separated because it is an image of a circular region
under an affine transformation and F (1) is an affine transformation.

The triangle in Figure 3(B) has small portions outside the unit circle. It is
wonder if the triangle can be inscribed in the unit circle. It was investigated
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whether the network with F (1) and F (2) in the form

b(1) = λ

1
1
1

 , W (1) = λ

−√3 −1√
3 −1

0 2

 , b(2) = µ
[
1
]
, W (2) = ν

[
1 1 1

]
.

also separates the unit disk for some λ, µ and ν.
The network was optimized only for three variables λ, µ and ν instead of

whole variables. (λ, µ, ν) = (43.8,−44.8, 17.7) was obtained as optimized values
for the triangular region and (2.6, 84.9, 41.1) for the unit disk. In Figure 4 the
level curves at level 0.5 and three lines determined by the equation F (1)(x) = 0
are shown in both cases.

−2 −1 0 1 2
−2

−1

0

1

2

(a) (λ, µ, ν) = (43.8,−44.8, 17.7)
solid line: the level curve at level 0.5,
dashed line: three lines F (1)(x) = 0

−2 −1 0 1 2
−2

−1

0

1

2

(b) (λ, µ, ν) = (2.6,−84.9, 41.1)
solid line: the level curve at level 0.5,
dashed line: three lines F (1)(x) = 0

Figure 4. Parametrization of networks

By varying the parameters along the line segment from (43.8,−44.8, 17.7) to
(2.6, 84.9, 41.1), the region varies from a triangular one to a circular one. Most
of them are round triangles.

Networks mentioned in this section so far separate a convex region. Now we
build a network which separates the union of two disjoint disks

L = {(x, y)|(x+ 1)2 + y2 ≤ 0.5}, R = {(x, y)|(x− 1)2 + y2 ≤ 0.5}.

Since a circular region can be separated using a polygon, a network may be built
from two polygons. But we want to build a network as simple as possible. After
several attempts, the following network is obtained:

R2 F (1)

−−−→ R4 σ−→ R4 F (2)

−−−→ R3 τ−→ R3 (5)

where τ is the softmax function. The cross entropy is used as a loss function.
In implementation, evenly spaced 60 × 40 points in the square [−2.3, 2.3] ×

[−1.4, 1.4] were taken as input vectors. Target vectors were taken by (1, 0, 0),
(0, 1, 0) and (0, 0, 1) in L, R and R2 − L ∪ R, respectively. After a few trials at
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random initial values, biases and weights reached

b(1)=


−0.01
−0.01
−6.37
−6.37

 , W (1)=


1.80 3.28
−1.80 3.28
−4.39 0.02
4.39 0.02

 ,
b(2)=

−5.00
−5.00
9.95

 , W (2)=

−63.32 62.57 −26.55 −1.63
62.40 −63.16 −1.57 −27.17
−0.25 −0.08 29.22 28.59

 .
The level curve of the third coordinate y

(2)
3 of the second output at level 0.5,

and four lines determined by the equation F (1)(x) = 0 are shown in Figure 5. It
is similar to the double of Figure 3(B).

−2 −1 0 1 2

−1

0

1

Figure 5. Separation of the union of two disjoint disks

solid line: the level curve of y
(2)
3 at level 0.5

dashed line: four lines F (1)(x) = 0

The two level curves of y
(2)
1 and y

(2)
2 at level 0.5 are approximately the same

as the left and right circles in Figure 5, respectively.
The dimension of the last internal layer can be taken as 1, that is, the targets

are 1 and 0 in L ∪ R and R2 − L ∪ R, respectively. In this case, the dimension
of the first internal layer should be at least 5.

The L2 loss function does not work well in the network (5). However, if the
dimension of the first internal layer is 5, we may find a well-working network.
If the rectifier is taken as an activation function of the first internal layer, the
dimension of the first internal layer should be at least 6 because level curves are
polygonal.

4. Conclusion

To separate a region, a network expand the spacing near the boundary of
the region, and then cut output data with a hyperplane. Generally, a region
bounded by line segments can be separated in R2. The dimension of the first
internal layer is the same as the number of sides of the boundary polygon. A
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circular region is also separated well. Dimensions are subtle but require less than
expected.
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