• Title/Summary/Keyword: invertible matrix

Search Result 30, Processing Time 0.02 seconds

Linear Preservers of Perimeters of Nonnegative Real Matrices

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.465-472
    • /
    • 2008
  • For a nonnegative real matrix A of rank 1, A can be factored as $ab^t$ for some vectors a and b. The perimeter of A is the number of nonzero entries in both a and b. If B is a matrix of rank k, then B is the sum of k matrices of rank 1. The perimeter of B is the minimum of the sums of perimeters of k matrices of rank 1, where the minimum is taken over all possible rank-1 decompositions of B. In this paper, we obtain characterizations of the linear operators which preserve perimeters 2 and k for some $k\geq4$. That is, a linear operator T preserves perimeters 2 and $k(\geq4)$ if and only if it has the form T(A) = UAV or T(A) = $UA^tV$ with some invertible matrices U and V.

STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING

  • Chen, Zhengxin;Zhao, Yu'e
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.973-981
    • /
    • 2021
  • Let R be a commutative ring with identity 1, n ≥ 3, and let 𝒯n(R) be the linear Lie algebra of all upper triangular n × n matrices over R. A linear map 𝜑 on 𝒯n(R) is called to be strong commutativity preserving if [𝜑(x), 𝜑(y)] = [x, y] for any x, y ∈ 𝒯n(R). We show that an invertible linear map 𝜑 preserves strong commutativity on 𝒯n(R) if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on 𝒯n(R).

Development of Standard Hill Technology for Image Encryption over a 256-element Body

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • This document traces the new technologies development based on a deep classical Hill method improvement. Based on the chaos, this improvement begins with the 256 element body construction, which is to replace the classic ring used by all encryption systems. In order to facilitate the application of algebraic operators on the pixels, two substitution tables will be created, the first represents the discrete logarithm, while the second represents the discrete exponential. At the same time, a large invertible matrix whose structure will be explained in detail will be the subject of the advanced classical Hill technique improvement. To eliminate any linearity, this matrix will be accompanied by dynamic vectors to install an affine transformation. The simulation of a large number of images of different sizes and formats checked by our algorithm ensures the robustness of our method.

Improving Levenberg-Marquardt algorithm using the principal submatrix of Jacobian matrix (Jacobian 행렬의 주부분 행렬을 이용한 Levenberg-Marquardt 알고리즘의 개선)

  • Kwak, Young-Tae;Shin, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.11-18
    • /
    • 2009
  • This paper proposes the way of improving learning speed in Levenberg-Marquardt algorithm using the principal submatrix of Jacobian matrix. The Levenberg-Marquardt learning uses Jacobian matrix for Hessian matrix to get the second derivative of an error function. To make the Jacobian matrix an invertible matrix. the Levenberg-Marquardt learning must increase or decrease ${\mu}$ and recalculate the inverse matrix of the Jacobian matrix due to these changes of ${\mu}$. Therefore, to have the proper ${\mu}$, we create the principal submatrix of Jacobian matrix and set the ${\mu}$ as the eigenvalues sum of the principal submatrix. which can make learning speed improve without calculating an additional inverse matrix. We also showed that our method was able to improve learning speed in both a generalized XOR problem and a handwritten digit recognition problem.

Accuracy Analysis of Parallel Method based on Non-overlapping Domain Decomposition Method (비중첩 영역 분할기법 기반 병렬해석의 정확도 분석)

  • Tak, Moonho;Song, Yooseob;Jeon, Hye-Kwan;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.

IDEMPOTENCE PRESERVING MAPS ON SPACES OF TRIANGULAR MATRICES

  • Sheng, Yu-Qiu;Zheng, Bao-Dong;Zhang, Xian
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.17-33
    • /
    • 2007
  • Suppose F is an arbitrary field. Let ${\mid}F{\mid}$ be the number of the elements of F. Let $T_{n}(F)$ be the space of all $n{\times}n$ upper-triangular matrices over F. A map ${\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is said to preserve idempotence if $A-{\lambda}B$ is idempotent if and only if ${\Psi}(A)-{\lambda}{\Psi}(B)$ is idempotent for any $A,\;B\;{\in}\;T_{n}(F)$ and ${\lambda}\;{\in}\;F$. It is shown that: when the characteristic of F is not 2, ${\mid}F{\mid}\;>\;3$ and $n\;{\geq}\;3,\;{\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is a map preserving idempotence if and only if there exists an invertible matrix $P\;{\in}\;T_{n}(F)$ such that either ${\Phi}(A)\;=\;PAP^{-1}$ for every $A\;{\in}\;T_{n}(F)\;or\;{\Psi}(A)=PJA^{t}JP^{-1}$ for every $P\;{\in}\;T_{n}(F)$, where $J\;=\;{\sum}^{n}_{i-1}\;E_{i,n+1-i}\;and\;E_{ij}$ is the matrix with 1 in the (i,j)th entry and 0 elsewhere.

INVOLUTION-PRESERVING MAPS WITHOUT THE LINEARITY ASSUMPTION AND ITS APPLICATION

  • Xu, Jin-Li;Cao, Chong-Guang;Wu, Hai-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.97-103
    • /
    • 2009
  • Suppose F is a field of characteristic not 2 and $F\;{\neq}\;Z_3$. Let $M_n(F)$ be the linear space of all $n{\times}n$ matrices over F, and let ${\Gamma}_n(F)$ be the subset of $M_n(F)$ consisting of all $n{\times}n$ involutory matrices. We denote by ${\Phi}_n(F)$ the set of all maps from $M_n(F)$ to itself satisfying A - ${\lambda}B{\in}{\Gamma}_n(F)$ if and only if ${\phi}(A)$ - ${\lambda}{\phi}(B){\in}{\Gamma}_n(F)$ for every A, $B{\in}M_n(F)$ and ${\lambda}{\in}F$. It was showed that ${\phi}{\in}{\Phi}_n(F)$ if and only if there exist an invertible matrix $P{\in}M_n(F)$ and an involutory element ${\varepsilon}$ such that either ${\phi}(A)={\varepsilon}PAP^{-1}$ for every $A{\in}M_n(F)$ or ${\phi}(A)={\varepsilon}PA^{T}P^{-1}$ for every $A{\in}M_n(F)$. As an application, the maps preserving inverses of matrces also are characterized.

  • PDF

LINEAR OPERATORS PRESERVING MAXIMAL COLUMN RANKS OF NONNEGATIVE REAL MATRICES

  • Kang, Kyung-Tae;Kim, Duk-Sun;Lee, Sang-Gu;Seol, Han-Guk
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.101-114
    • /
    • 2007
  • For an $m$ by $n$ nonnegative real matrix A, the maximal column rank of A is the maximal number of the columns of A which are linearly independent. In this paper, we analyze relationships between ranks and maximal column ranks of matrices over nonnegative reals. We also characterize the linear operators which preserve the maximal column rank of matrices over nonnegative reals.

  • PDF

Linear operators that preserve spanning column ranks of nonnegative matrices

  • Hwang, Suk-Geun;Kim, Si-Ju;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.645-657
    • /
    • 1994
  • If S is a semiring of nonnegative reals, which linear operators T on the space of $m \times n$ matrices over S preserve the column rank of each matrix\ulcorner Evidently if P and Q are invertible matrices whose inverses have entries in S, then $T : X \longrightarrow PXQ$ is a column rank preserving, linear operator. Beasley and Song obtained some characterizations of column rank preserving linear operators on the space of $m \times n$ matrices over $Z_+$, the semiring of nonnegative integers in [1] and over the binary Boolean algebra in [7] and [8]. In [4], Beasley, Gregory and Pullman obtained characterizations of semiring rank-1 matrices and semiring rank preserving operators over certain semirings of the nonnegative reals. We considers over certain semirings of the nonnegative reals. We consider some results in [4] in view of a certain column rank instead of semiring rank.

  • PDF

Implementation of Levitation Controller for Toroidally-Wound Self-Bearing BLDC Motor Using Continuously Invertible Force Model (연속적 역변환이 가능한 힘 모델을 이용한 환형권선 셀프베어링 BLDC 모터의 부상 제어기 구현)

  • Choi, Won-Yeong;Choi, Jung-Kyu;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.899-903
    • /
    • 2013
  • A self-bearing is an electric machine that achieves both rotational actuation and magnetic levitation using a single magnetic structure. To be able to stably levitate the rotor in a self-bearing, one needs to have an inverse of the force-current model. However, the force-current model in a self-bearing motor is typically not square. Furthermore, the elements of the matrix vary with respect to the rotational angle, resulting in singularities of the pseudo-inverse at various angles. In this paper, we propose a new force-current model that eliminates the singularities by adding a constraint in coil currents. This constraint eliminates the flux density in the stator core so that the saturation problem in the previous study is avoided. By implementing this force-current model, we are able to implement a levitation controller for a toroidally-wound self-bearing BLDC motor. The model inversion and levitation are validated experimentally.