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Abstract. For a nonnegative real matrix A of rank 1, A can be factored as abt for some

vectors a and b. The perimeter of A is the number of nonzero entries in both a and b. If B

is a matrix of rank k, then B is the sum of k matrices of rank 1. The perimeter of B is the

minimum of the sums of perimeters of k matrices of rank 1, where the minimum is taken

over all possible rank-1 decompositions of B. In this paper, we obtain characterizations of

the linear operators which preserve perimeters 2 and k for some k ≥ 4. That is, a linear

operator T preserves perimeters 2 and k(≥ 4) if and only if it has the form T (A) = UAV ,

or T (A) = UAtV with some invertible matrices U and V .

1. Introduction

There is much literature on the study of linear operators that preserve the
ranks of matrices over several semirings([1]-[8]). Nonnegative matrices also have
been the subject of research by many authors([2], [5], [6], [8]). Beasley, Gregory
and Pullman [2] obtained characterizations of linear operators which preserve the
rank of nonnegative real matrices. In [8], Song and Hwang characterized spanning
column ranks and their preservers of nonnegative matrices. Beasley, Song, Kang
and Sarma [5] treated column ranks of nonnegative real matrices and characterized
their preservers.

But there are few papers on the characterizations of linear operators preserv-
ing the perimeter of matrices. Beasley et al. characterized those linear operators
preserving the rank and perimeter of Boolean rank-1 matrices([1]).

In this paper, we consider the set of linear operators that preserve the perimeter
of matrices of rank k(≥ 2) over the nonnegative reals.

Received June 9, 2007.
2000 Mathematics Subject Classification: 15A48, 15A04, 15A23.
Key words and phrases: rank, perimeter, linear operator, (U, V )-operator.

465



466 Seok-Zun Song and Kyung-Tae Kang

2. Preliminaries and some results

Let Mm,n(R+) denote the set of all m×n matrices with entries in R+, the set of
nonnegative reals. Addition, multiplication by scalars, and the product of matrices
are also defined as if R+ were a field. Throughout this paper, we shall adopt the
convention that 1 ≤ m ≤ n unless otherwise specified.

The rank or factor rank, r(A), of a nonzero matrix A ∈ Mm,n(R+) is defined
as the least integer k for which there exist m× k and k× n matrices B and C with
A = BC. The rank of a zero matrix is zero.

The Boolean algebra consists of the set B = {0, 1} equipped with two binary
operations, addition and multiplication. The operations are defined as usual except
that 1 +B 1 = 1. If A = [aij ] is any matrix in Mm,n(R+), we define A∗ = [a∗ij ]
to be the m × n Boolean matrix whose (i, j)-th entry is 1 if and only if aij 6= 0.
Then ∗ maps Mm,n(R+) onto Mm,n(B), and preserves matrix addition, product,
and multiplication by scalars. That is, ∗ is a homomorphism. It follows that

(2.1) (A + B)∗ = A∗ + B∗ and (BC)∗ = B∗C∗,

for all A,B ∈ Mm,n(R+) and all C ∈ Mn,r(R+).
If A ∈ Mm,n(R+) with r(A) = 1, there exist nonzero vectors a ∈ Mm,1(R+)

and b ∈ Mn,1(R+) such that A = abt. But these vectors a and b are not uniquely
determined by A. For any vector u ∈ Mm,1(R+), |u| denote the number of nonzero
entries in u.

Lemma 2.1. For any factorization abt of A ∈ Mm,n(R+) with r(A) = 1, |a| and
|b| are uniquely determined by A.

Proof. It follows from (2.1) and the fact that |a∗| and |b∗| are uniquely determined
by A∗. �

Let A be a rank-1 matrix in Mm,n(R+). We define the perimeter of a rank-1
matrix A, p(A), as |a| + |b| for arbitrary factorization A = abt. By Lemma 2.1,
p(A) is well-defined. For any matrix A in Mm,n(R+), a rank-1 decomposition of A
is a sum of matrices of rank 1 which equals A. We say that A has 1-rank k if k is
the minimal number of terms in any rank-1 decomposition of A. This shows that A
has 1-rank k if and only if r(A) = k. If A ∈ Mm,n(R+), the perimeter of A, p(A),
is defined as

min

{
t∑

i=1

p(Ai)
∣∣∣ t∑

i=1

Ai is a rank-1 decomposition of A, 1 ≤ t ≤ m

}
.

Let Pk denote the set of matrices in Mm,n(R+) whose perimeter is k for k =
2, 3, · · · ,m(n + 1). Let Eij denote the m × n matrix whose (i, j)th entry is 1 and
whose other entries are all 0, and Em,n = {Eij |1 ≤ i ≤ m, 1 ≤ j ≤ n}. We call
Eij a cell and αEij a weighted cell for any nonzero scalar α ∈ R+. Thus, we have
A ∈ P2 if and only if A is a weighted cell.
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For any matrix A ∈ Mm,n(R+), a line is a row or a column of A. The set of
cells is collinear if they are located in a same line. We denote the number of all
nonzero entries in a matrix A ∈ Mm,n(R+) as |A|.

Let A be a matrix in P2h(1 ≤ h ≤ m) which has minimum nonzero entries.
What is the value of |A| ? The answer is |A| = h, and any two nonzero entries are
not located in a same line. Let B be a matrix in P2h+1(1 ≤ h ≤ m− 1) which has
minimum nonzero entries. Then we have |B| = h + 1, and h lines contain all h + 1
nonzero entries. Furthermore, at least one line contains two nonzero entries. This
proves the following Lemma:

Lemma 2.2. The following statements hold :

(1) Let k = 2h with 1 ≤ h ≤ m. Then the elements of Pk with minimum weighted
cells have exactly h nonzero entries, no two of them are in one line.

(2) Let k = 2h + 1 with 1 ≤ h ≤ m− 1. Then the elements of Pk with minimum
weighted cells have exactly h + 1 nonzero entries which are located in h lines,
and at least one line has two nonzero entries.

Consider a matrix

A =

a 0 b
0 0 0
c 0 d

 ∈ M3,3(R+),

where abcd 6= 0. Then the minimum number of lines that contain all the nonzero
entries of A is 2. The Lemma 2.3(below) shows that the value of p(A) is either 4
or 6. In fact, if ad = bc, then p(A) = 4, while ad 6= bc implies p(A) = 6 from the
following factorizations :

A =

a
0
c

 [
1 0 b

a

]
and A =

1
0
0

 [
a 0 b

]
+

0
0
1

 [
c 0 d

]
,

respectively.

Lemma 2.3. Let A be a matrix in Mm,n(R+) with |A| = t + 2. If the mini-
mum number of lines that contain all the nonzero entries of A is t, we have either
p(A) = 2t or p(A) = 2t + 2.

Proof. Since t is the minimum number of lines that contain all nonzero entries of
A = [aij ], without loss of generality we may assume aii 6= 0 for i = 1, · · · , t. It
follows that the remaining two nonzero entries, x and y, lie on the ith row or the
jth column for some i, j = 1, · · · , t. Then two possibilities exist : (a) x and y lie
on the same line ; (b) x and y lie on two different lines. For the case (a), we have
p(A) = 2t + 2. For the case (b), if there exist distinct indices i, j in {1, · · · , t} with
x = aij and y = aji such that aii

aji
= aij

ajj
, then we have p(A) = 2t. For the other

cases, the value of p(A) is 2t + 2. �
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3. Linear operators preserving P2 and Pk

In this section, we will characterize those linear operators that preserve perime-
ters 2 and k ≥ 3. An n×n nonnegative real matrix A is said to be invertible if there
exists a matrix B ∈ Mn,n(R+) such that AB = BA = In, where In is the n × n
identity matrix. It is well known [2] that a square matrix A over R+ is invertible if
and only if some permutation of its rows is a diagonal matrix all of whose diagonal
entries are nonzero in R+.

Lemma 3.1. The perimeter of a matrix of rank 1 is preserved under pre or post-
multiplication by an invertible matrix.

Proof. If A is a matrix in Mm,n(R+) with r(A) = 1, there exist nonzero vectors
a ∈ Mm,1(R+) and b ∈ Mn,1(R+) such that A = abt. Let U and V be invertible
matrices in Mm,m(R+) and Mn,n(R+), respectively. Then we have

p(UAV ) = p(UabtV ) = p
(
(Ua)(V tb)t

)
= |Ua|+ |V tb| = |a|+ |b| = p(A).

The Lemma now follows. �

A mapping T : Mm,n(R+) → Mm,n(R+) is called a linear operator if
T (αA+βB) = αT (A)+βT (B) for all A,B ∈ Mm,n(R+) and for all α, β ∈ R+. For
a linear operator T on Mm,n(R+), we say that T is a (U, V )-operator if there exist
invertible matrices U ∈ Mm,m(R+) and V ∈ Mn,n(R+) such that T (A) = UAV
for all A in Mm,n(R+), or m = n and T (A) = UAtV for all A in Mm,n(R+). A
linear operator T on Mm,n(R+) is said to preserve perimeter if p(T (A)) = p(A) for
all A ∈ Mm,n(R+). A linear operator T on Mm,n(R+) preserves Pk if T (A) ∈ Pk

whenever A ∈ Pk.

Proposition 3.2. If T is a (U, V )-operator on Mm,n(R+), then T preserves
perimeter.

Proof. Since T is a (U, V )-operator, there exist invertible matrices U ∈ Mm,m(R+)
and V ∈ Mn,n(R+) such that either T (A) = UAV , or m = n and T (A) = UAtV

for all A in Mm,n(R+). Let A =
t∑

i=1

Ai be a rank-1 decomposition of A.

For the case T (A) = UAV , we have

t∑
i=1

p(T (Ai)) =
t∑

i=1

p(UAiV ) =
t∑

i=1

p(Ai)

by Lemma 3.1. This implies that p(T (A)) = p(A). For the case T (A) = UAtV , we
can show that p(T (A)) = p(A) by the similar method as above. Thus the proof is
complete. �

Let Ri = {Eij | 1 ≤ j ≤ n}, Cj = {Eij | 1 ≤ i ≤ m}, R = {Ri | 1 ≤ i ≤ m}
and C = {Cj | 1 ≤ j ≤ n}. For a linear operator T on Mm,n(R+), define T ∗(X) =
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[T (X)]∗ for all X in Mm,n(R+). Let T ∗(Ri) = {T ∗(Eij) | 1 ≤ j ≤ n} for each
i = 1, · · · ,m and T ∗(Cj) = {T ∗(Eij) | 1 ≤ i ≤ m} for each j = 1, · · · , n. Let T be a
linear operator on Mm,n(R+) which preserves P2. Then T ∗ maps Em,n into Em,n

because P2 is the set of all weighted cells.

Lemma 3.3. Let 4 ≤ k ≤ 2m. If T is a linear operator on Mm,n(R+) which
preserves P2 and Pk, then T ∗ maps Em,n onto Em,n.

Proof. We consider two cases: (a) k = 2h + 1 with 2 ≤ h ≤ m− 1 and (b) k = 2h
with 2 ≤ h ≤ m.

Case a. k = 2h + 1 with 2 ≤ h ≤ m − 1. Suppose T ∗ does not map Em,n

onto Em,n. Then there exist two distinct cells Eij and Epq in Em,n such that
T ∗(Eij) = T ∗(Epq). By Lemma 2.2-(2), there is a matrix X = [xij ] ∈ Pk which
has minimum nonzero entries such that xij 6= 0 and xpq 6= 0. But then we have
T (X) /∈ Pk because |T (X)| < |X|. This contradiction shows that T ∗ maps Em,n

onto Em,n.

Case b. k = 2h with 2 ≤ h ≤ m. Assume that T ∗(Eij) = T ∗(Epq) for two
distinct cells Eij and Epq in Em,n. If Eij and Epq are not collinear, by the similar
argument of case a) with Lemma 2.2-(1), there exists a matrix Y = [yij ] in Pk

which has minimum nonzero entries such that yij 6= 0 and ypq 6= 0. But then we
have T (Y ) /∈ Pk because |T (Y )| < |Y |. This is a contradiction. Hence Eij and
Epq are collinear. Without loss of generality we may assume (i, j) = (1, 1) and
(p, q) = (1, 2).

Consider a matrix Z = E1,1 +E1,2 +E1,3 +
h−1∑
i=2

Ei,i ∈ Mm,n(R+). Then we have

Z ∈ Pk with |Z| = h + 1. But then |T (Z)| ≤ h follows from T ∗(Eij) = T ∗(Epq).
Since a matrix A ∈ Pk with minimum nonzero entries contains h nonzero entries,
and T preserves Pk, we have |T (Z)| = h. By Lemma 2.2-(1), any two nonzero
entries in T (Z) are not collinear. Without loss of generality we may assume that
T ∗(E1,1) = T ∗(E1,2) = E1,1, T ∗(Ei,i) = Ei,i for 2 ≤ i ≤ h− 1 and T ∗(E1,3) = Er,s,
where r, s ≥ h.

Let W = E1,1 + E1,3 + E1,t +
h−1∑
i=2

Ei,i be a matrix in Mm,n(R+) with 4 ≤ t ≤ n

so that W ∈ Pk. Suppose that T ∗(E1,t) is neither Ei,i for 1 ≤ i ≤ h − 1 nor
Er,s. Then we have p(T (W )) ≥ k + 1, a contradiction because T preserves Pk.
Hence for all 4 ≤ t ≤ n, T ∗(E1,t) is one of Ei,i for 1 ≤ i ≤ h − 1 or Er,s. Let

S = E1,3 + E1,4 + E1,h +
h−1∑
i=2

Ei,i be a matrix in Mm,n(R+) so that S ∈ Pk. But

then we have |T (S)| ≤ h−1, and hence T (S) /∈ Pk, a contradiction. This completes
the proof. �

Let T : Mm,n(R+) → Mm,n(R+) be a linear operator which preserves P2.
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Because T ∗ maps Em,n into Em,n, we can write for all X = [xij ] ∈ Mm,n(R+),

T (X) =
m∑

i=1

n∑
j=1

xijbijT
∗(Eij),

where each bij is a nonzero scalar in R+.

Lemma 3.4. Let k = 2h with 2 ≤ h ≤ m. If T is a linear operator on Mm,n(R+)
which preserves P2 and Pk, then T maps lines onto lines.

Proof. It follows from Lemma 3.3 that T ∗ maps Em,n onto Em,n. Suppose T does
not preserve lines to lines. Then there exist two distinct cells Eij and Epq which
are not collinear such that T (Eij) and T (Epq) are collinear. Let

X = Eij + Epq +
h−2∑
t=1

Eitjt

be a matrix in Mm,n(R+), where all it, i, p are distinct and all jt, j, q are distinct.
Then we have p(X) = k, while p(T (X)) ≤ 3+2(h−2) = 2h−1 < k, a contradiction.
Therefore T maps lines onto lines. �

Lemma 3.5. Let 4 ≤ k ≤ 2m. If T is a linear operator on Mm,n(R+) which
preserves P2 and Pk, then T maps lines onto lines.

Proof. By Lemma 3.4, we can assume that k = 2h + 1 with 2 ≤ h ≤ m − 1.
Lemma 3.3 implies that T ∗ maps Em,n onto Em,n. If T does not map lines onto
lines, without loss of generality we may assume that T (E1,1) and T (E1,2) are not

collinear. Let X = E1,1 + E1,2 +
h∑

i=2

Ei,i be a matrix in Mm,n(R+) so that X ∈ Pk.

But then T (X) is a sum of h + 1 weighted cells with p(T (X)) = k because T
preserves Pk. By Lemma 2.2-(2), all nonzero entries in T (X) must be located in h
line, and at least one line has two nonzero entries.

Let Y be a matrix which is the sum of h cells including E1,1 and E1,2 such that
h is the minimum number of lines that contain all the nonzero entries of T (Y ). Let
Z = Y + E1,3 + E1,h be a matrix in Mm,n(R+) so that p(Z) = 5 + 2(h − 2) =
2h + 1 = k. But then T (Z) is the sum of h + 2 weighted cells, and the minimum
number of lines that contain all the nonzero entries of T (Z) is greater than or equal
to h. By Lemma 2.3, the perimeter of T (Z) is either 2h, 2h + 2, 2h + 3 or 2h + 4, a
contradiction. Therefore T maps lines onto lines. �

Theorem 3.6. If T is a linear operator on Mm,n(R+) which preserves P2 and Pk

with 4 ≤ k ≤ min(2m,n + 2), we have T is a (U, V )-operator.

Proof. It follows from Lemma 3.3 that T ∗ maps Em,n onto Em,n. By Lemma 3.5,
there are two cases ; (a) T ∗ maps R onto R and maps C onto C or (b) T ∗ maps R
onto C and C onto R.

Case a. We note that T ∗(Ri) = Rσ(i) and T ∗(Cj) = Cτ(j) for all i, j, where σ
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and τ are permutations of {1, · · · ,m} and {1, · · · , n}, respectively. Let P and Q
be the permutation matrices corresponding to σ and τ , respectively. Then for any
Eij ∈ Em,n, we can write T (Eij) = bijEσ(i)τ(j) for some nonzero scalar bij ∈ R+.
Now we claim that for all i, l ∈ {1, · · · ,m} and all j, r ∈ {1, · · · , n},

bij

bir
=

blj

blr
.

Consider a matrix

A = Eij + Eir + Elj + Elr +
k−4∑
t=1

(
Eijt + Eljt

)
,

where jt 6= j, r for all t = 1, · · · , k − 4. Then we have p(A) = k and the image of A
becomes

T (A) = bijEσ(i)τ(j) + birEσ(i)τ(r) + bijEσ(i)τ(j) + birEσ(i)τ(r)

+
k−4∑
t=1

(
bijtEσ(i)τ(jt) + bljtEσ(l)τ(jt)

)
.

Since T (A) has perimeter k, it follows that bij

bir
= blj

blr
= bijt

bljt
for all t = 1, · · · , k− 4.

Let C ∈ Mm,m(R+) and D ∈ Mn,n(R+) be diagonal matrices such that

c11 = 1, d11 = b11, cii =
bi1

b11
, and djj = b1j

for all i = 2, · · · ,m and j = 2, · · · , n. Then we have bij = ciidjj for all i = 1, · · · ,m
and j = 1, · · · , n. Let X = [xij ] be any m× n matrix in Mm,n(R+). Then we have

T (X) = T

 m∑
i=1

n∑
j=1

xijEij

 =
m∑

i=1

n∑
j=1

xijT (Eij)

=
m∑

i=1

n∑
j=1

xijbijEσ(i)τ(j) =
m∑

i=1

n∑
j=1

ciixijEσ(i)τ(j)djj

= CPXQD.

Since CP = U is an m × m invertible matrix and QD = V is an n × n invertible
matrix, it follows that T is a (U, V )-operator.

Case b. This is the case of m = n and T ∗(Ri) = Cσ(i) and T ∗(Cj) = Rτ(j) for
all i and j, where σ and τ are permutations of {1, · · · ,m}. By similar argument
to case a), we obtain that T (X) is of the form T (X) = CPXtQD. Thus T is a
(U, V )-operator. �

We say that a linear operator T on Mm,n(R+) strongly preserves perimeter k if
T (A) ∈ Pk if and only if A ∈ Pk.
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Theorem 3.7. If T is a linear operator on Mm,n(R+) which strongly preserves P2

and P3, T is a (U, V )-operator.

Proof. It is obvious that T ∗ maps Em,n onto Em,n because T strongly preserves P2.
If T does not map lines to lines, there exist two distinct cells Eij and Epq which are
collinear such that T (Eij) and T (Epq) are not collinear. But then the perimeter of
Eij + Epq is 3, while that of T (Eij + Epq) is 4, a contradiction. It follows that T
maps lines to lines. By the similar method in the proof of Theorem 3.6, we have T
is a (U, V )-operator. �

Corollary 3.8. Let T be a linear operator on Mm,n(R+). Then the following are
equivalent ;
(1) T is a (U, V )-operator.
(2) T preserves perimeter.
(3) T preserves P2 and Pk with 4 ≤ k ≤ min(2m,n + 2).
(4) T strongly preserves P2 and Pk with 3 ≤ k ≤ min(2m,n + 2).
Proof. The proof follows from Theorem 3.6 and Theorem 3.7. �

Thus we have characterizations of the linear operators which preserve all perime-
ters over the nonnegative reals.
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