• Title/Summary/Keyword: inverted-pendulum

Search Result 463, Processing Time 0.03 seconds

Biped Robot Control for Stable Walking (바이패드 로봇의 안정적인 거동을 위한 제어)

  • 김경대;박종형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

An Efficient Horizontal Maintenance Technique for the Mobile Inverted Pendulum (모바일 역진자의 효율적 수평유지 기법)

  • Yun, Jae-Mu;Lee, Jae-Kyoung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.656-663
    • /
    • 2007
  • A new dynamic balancing algorithm has been proposed to minimize the number of sensors necessary for the horizontal balancing of the mobile inverted pendulum while maintaining the same level of the commercial performance. The inverted pendulum technique is getting attention and there have been many researches on the Segway since the US inventor Dean Kamen commercialized. One of the major problems of the Segway is that many sensors are required for the control of the Segway, which results in the high price. In this research, a single gyro and a tilt sensor are fused to obtain the absolute tilt information, which is applied for the control of the mobile inverted pendulum. A dynamic balancing technique has been developed and applied for a robust control system against disturbances. The intelligent handling and stable curving of the Segway as a next generation mobile tool are verified with a human loading.

Experimental Studies of Neural Compensation Technique for a Fuzzy Controlled Inverted Pendulum System

  • Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy rules may not work and result in tracking errors in some cases. First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights. Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum system are conducted and performances are compared.

Time Delay Control of an Inverted Pendulum using Robot Manipulator (로봇 매니플레이터를 이용한 도립진자의 시간 지연 제어)

  • Chi, Jong-Hwan;Han, Sang-Wan;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3057-3059
    • /
    • 1999
  • The inverted pendulum is an unstable, nonlinear system exposed to disturbances and its system parameters change. This paper presents the Time Delay Control design of the inverted pendulum using robot minipulator. The results obtained from a simulations indicated a reference tracking of the system. This paper will implement, the time delay control of the inverted pendulum using a robot manipulator, It will be that the time delay can control the inverted pendulum using a manipulator.

  • PDF

Stabilization control of inverted pendulum by adaptive fuzzy inference technique (적응 퍼지추론 기법에 의한 도립진자의 안정화 제어)

  • 전부찬;심영진;이준탁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.207-210
    • /
    • 1997
  • In this paper, a hierarchical fuzzy controller for stabilization of the inverted pendulum system is proposed. The facility of this hierarchical fuzzy controller which has a swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point (.PHI.$_{VEq}$ ) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed hierarchical fuzzy inference made substantially the inverted pendulum system robust and stable.e.

  • PDF

Decoupled Neural Network Reference Compensation Technique for a PD Controlled Two Degrees-of-Freedom Inverted Pendulum

  • Seul Jung;Cho, Hyun-Taek
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 2004
  • In this paper, the decoupled neural network reference compensation technique (DRCT) is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an x-y table. Neural networks are used as auxiliary controllers for both the x axis and y axis of the PD controlled inverted pendulum. The DRCT method known to compensate for uncertainties at the trajectory level is used to control both the angle of a pendulum and the position of a cart simultaneously. Implementation of an on-line neural network learning algorithm has been implemented on the DSP board of the dSpace DSP system. Experimental studies have shown successful balancing of a pendulum on an x-y plane and good position control under external disturbances as well.

Control Education Using Pendulum Apparatus

  • Hoshino, Tasuku;Yamakita, Masaki;Furuta, Katsuhisa
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2000
  • The inverted pendulum is a typical example of unstable systems and has been used for verification of designed control systems. It is also very popular in control education in laboratories, serving as a good example to show the utility of the state space approach to the controller design. This paper shows two kinds of experiment using inverted pendulum: one is the stabilization of a single spherical inverted pendulum by a plane manipulator using visual feedback, and the other is the state transfer control of a double pendulum. In the former experiment, the feedback stabilization using a CCD camera has major importance as an example of controller implementation with non-contact measurement. The latter involves the standard stabilizing regulation method and nonlinear control techniques. The details of the experimental systems, the control algorithms and the experimental results will be given.

  • PDF

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

Learning Control of Inverted Pendulum Using Neural Networks. (신경회로망을 이용한 도립진자의 학습제어)

  • Lee, Jae-Kang;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.201-206
    • /
    • 2000
  • A priori information of object is needed to control in some well known control methods. But we can't always know a priori information of object in real world. In this paper, the inverted pendulum is simulated as a control task with the goal of learning to balance the pendulum with no a priori information using neural network controller. In contrast to other applications of neural networks to the inverted pendulum task, the performance feedback is unavailable on each training step, appearing only as a failure signal when the pendulum falls or reaches the bound of track. To solve this task, the delayed performance evaluation and the learning of nonlinear of nonlinear functions must be dealt. Reinforcement learning method is used for those issues.

  • PDF

Posture control of double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립진자의 자세제어)

  • Yi, Keon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-584
    • /
    • 1999
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link of the target pendulum system is hinged on the plate to free for rotation in the specified range($10^{\cire}$) on the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though it has no actuator in lower hinge. The algorithm to control the inverted pendulum consists of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a nonlinear feedback compensator for the rest of the range. Conventional state feedback control is employed, and the fuzzy controller is responsible for generating the reference joint angle of the upper link for the nonlinear feedback compensator which drives a DC motor to generate an indirect torque to the lower joint. As a result, we can get the upright posture of the proposed pendulum system. Simulations and experiments are conducted to show the validity of the proposed controller.

  • PDF