• Title/Summary/Keyword: inverted

Search Result 1,868, Processing Time 0.026 seconds

RCGA-Based Parameter Estimation and Stabilization Control of an Inverted Pendulum System (RCGA를 이용한 도립진자 시스템의 파라미터 추정 및 안정화 제어)

  • Ahn, Jong-Kap;Lee, Yun-Hyung;Yoo, Heui-Han;So, Myung-Ok;Jin, Gang-Gyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.746-752
    • /
    • 2006
  • This paper presents a scheme for the parameter estimation and stabilization of unstable systems, such as inverted pendulum systems. First a stable feedback loop is constructed for an inverted pendulum system and then its parameters are estimated based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. Then, a PI-type LQ control scheme is designed based on the estimated model. The performance of the proposed algorithm is demonstrated through a set of simulation and experiment.

A Development of the Self-Standable Mobile Robot Based on a Wheeled Inverted Pendulum Mechanism (자기-기립 가능한 차륜형 역진자 기구 기반의 이동로봇 개발)

  • Lee, Se-Han;Kang, Jae-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.171-176
    • /
    • 2013
  • In this research a Self-Standable mobile Robot with standing arms based on an Wheeled Inverted Pendulum is developed. Almost existing mobile robots have wide planar shape that is statistically stable and it is sometimes hard for them to run or steer on a narrow road. A Wheeled Inverted Pendulum based mobile robot has vertical shape that is upright-running and easily steering on a narrow road. It, however, requires actively balancing control and never restores the shape once it falls down. This research develops a Self-Standable mobile robot which equips standing arms and is able to change its chassis' posture freely from planar to vertical shape or vice versa.

Flicker-Free Visible Light Communication System Using Byte-Inverted Transmission (바이트반전 전송방식을 이용한 플리커 방지 가시광통신시스템)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.408-413
    • /
    • 2017
  • In this paper, we newly developed a byte-inverted transmission method for flicker-free visible light communication (VLC). The VLC transmitter sends original data in the former half period of the clock, and inverted data and in the latter half period of the clock. The VLC receiver receives the original data in the in the former half period of the clock. In this system, we used 480Hz clock that was generated from the 60Hz power line. The average optical power of the LED array in the transmitter is constant, thus flicker-free, in the observation time longer than the period of the clock that is about 2ms. This period is shorter than the maximum flickering time period (MFTP) of 5ms that is generally considered to be safe. This configuration is very useful in constructing indoor wireless sensor networks using LED light because it is flicker-free and does not require additional transmission channel for clock transmission.

Strength Evaluation of Inverted T-shaped Composite Basement Wall Based on Failure Mechanisms (파괴기구에 근거한 역 T형 합성지하벽의 강도평가)

  • 박지환;서수연;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.415-420
    • /
    • 2003
  • This Study is performed to analyze the behavior of inverted T-shaped Composite Basement Wall(CBW). For this, it is purposed to analyze the failure mechanisms of inverted T-shaped composite basement wall and propose the method of evaluating strength for design. The failure mechanisms would be devided into 4 type mechanisms from previous experimental results, that is hanger failure, punching shear failure, flexural failure and the buckling of H-pile. A strength evaluation procedure for CBW is induced by analyzing respective failure mechanism. Then, the strength for actual structure consisted of inverted T-shaped composite basement wall was evaluated and the expected failure mechanism was determined.

  • PDF

Nonlinear $H_2/H_\infty/LTR$ Control of the Parallel Flexible Inverted Pendulum Connected by a Spring (스프링 연결 병렬형 탄성 역진자의 비선형 $H_2/H_\infty/LTR$ 제어)

  • 한성익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.356-366
    • /
    • 2000
  • In this paper, a nonlinear $H_2/H_\infty/LTR$ control for the flexible inverted pendulum of a parallel type with Coulomb friction is presented. The dynamic equation for this system is derived by the Hamilton's principle and assumed-mode method. This hard nonlinear system can be modeled by a the quasi-linear state space model using the REF method. It is shown that the $H_2/H_\infty$ control can be applied to the nonlinear controller design of the system having Coulomb frictions if the proper LTR conditions are satisfied. In order to present the usefulness of the suggested control method, the nonlinear $H_2/H_\infty/LTR$ controller is designed to control the Position of the end point of the flexible inverted pendulum that has Coulomb frictions present in actuator parts. The results are given via computer simulations.

  • PDF

Stabilization of a Two-link Inverted Pendulum with a Rate Gyro (자이로를 이용한 두 링크 도립진자의 자세안정화)

  • Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 2012
  • Human generally uses three methods to keep balance. One of them is using reactive momentum such as swing an upper body or arms. In this study, we proposed a balancing controller for the reactive momentum method using an inverted pendulum. We simplified a human or a humanoid robot as a two-link inverted pendulum having two edges. In addition, we proposed a distinctive condition for controller transition. If a human is pushed, he has to change a balancing controller from using an ankle torque to using a reactive momentum or changing foot placement. When the balancing controller is changed from using an ankle torque to using a reactive momentum, it is required a proper timing to keep a stability and make smooth movement. In the experiment, the proposed controller and distinctive condition were verified.

An inverted-F antenna for 2.4/5GHz WLAN applications (2.4/5GHz 무선랜 대역용 inverted-F 안테나)

  • Chae, G.S.;Cho, Y.K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.409-412
    • /
    • 2003
  • An inverted-F antenna for wireless local area network (WLAN) is presented. The proposed design is based on the typical dual-band planar inverted-F antennas (PIFA), which have two tunable resonant modes. The low-profile antenna is built by stamping and designed to be mounted on the metal frame of the laptop LCD panel. The obtained antenna can perform in 2.4GHz and 5GHz bands and be adopted for other wireless applications. All the measurements are performed in the actual test fixture.

  • PDF

Stabilization Control of Inverted Pendulum by Self tuning Fuzzy Inference Technique (자기동조 피지추론 기법에 의한 도립진자의 안정화 제어)

  • Shim, Young-Jin;Kim, Tae-Woo;Lee, Oh-Keol;Park, Young-Sik;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.83-85
    • /
    • 1997
  • In this paper, a self-tunning fuzzy inference technique for stabilization of the inverted pendulum system is proposed. The facility of this self-tunning fuzzy controller which has swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position, to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point(${\phi}_{VEq}$) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed self-tunning fuzzy inference structure made substantially the inverted pendulum system robust and stable.

  • PDF

Design of Optimized Cascade Controller by Hierarchical Fair Competition-based Genetic Algorithms for Rotary Inverted Pendulum System (계층적 공정 경쟁 유전자 알고리즘을 이용한 회전형 역 진자 시스템의 최적 캐스케이드 제어기 설계)

  • Jung, Seung-Hyun;Jang, Han-Jong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.104-106
    • /
    • 2007
  • In this paper, we propose an approach to design of optimized Cascade controller for Rotary Inverted Pendulum system using Hierarchical Fair Competition-based Genetic Algorithm(HFCGA). GAs may get trapped in a sub-optimal region of the search space thus becoming unable to find better quality solutions, especially for very large search space. The Parallel Genetic Algorithms(PGA) are developed with the aid of global search and retard premature convergence. HFCGA is a kind of multi-populations of PGA. In this paper, we design optimized Cascade controller by HFCGA for Rotary Inverted Pendulum system that is nonlinear and unstable. Cascade controller comprise two feedback loop, parameters of controller optimize using HFCGA. Then designed controller evaluate by apply to the real plant.

  • PDF

The Control and the Real-time Analysis of a Horizontally Rotating Inverted Pendulum (수평회전형 도립진자의 제어 및 실시간 해석)

  • 김효중;김헌진;강철구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.341-345
    • /
    • 1996
  • This paper presents the dynamics and the teal-time control of a horizontally rotating inverted pendulum. The dynamic equations representing three degrees of freedom rigid body motion of the pendulum are derived, and the state feedback controller is applied to the motion control of the pendulum. A 32 bit counter board with 16 bit hardware communication ability is developed to improve the real-time control performance and is applied to a horizontally rotating inverted pendulum. The simulation and experimental studies are conducted to evaluate the performance of the developed pendulum system and the timing in the real-time control is analyzed.

  • PDF