• 제목/요약/키워드: inverse-strongly-monotone mapping

검색결과 15건 처리시간 0.018초

SOLUTIONS OF SYSTEMS OF VARIATIONAL INEQUALITIES ON FIXED POINTS OF NONEXPANSIVE MAPPINGS

  • Piri, Hossein
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.621-640
    • /
    • 2014
  • In this paper, we introduce a new approximating method for finding the common element of the set of fixed points of nonexpansive mappings and the set of solution of system variational inequalities for finite family of inverse strongly monotone mappings and strictly pseudo-contractive of Browder-Petryshyn type mappings. We show that the sequence converges strongly to a common element the above two sets under some parameter controling conditions. Our results improve and extend the results announced by many others.

ITERATIVE METHODS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND NONEXPANSIVE MAPPINGS

  • Cho, Sun-Young;Kang, Shin-Min;Qin, Xiaolong
    • 대한수학회논문집
    • /
    • 제26권1호
    • /
    • pp.51-65
    • /
    • 2011
  • In this paper, a composite iterative process is introduced for a generalized equilibrium problem and a pair of nonexpansive mappings. It is proved that the sequence generated in the purposed composite iterative process converges strongly to a common element of the solution set of a generalized equilibrium problem and of the common xed point of a pair of nonexpansive mappings.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • 대한수학회지
    • /
    • 제55권4호
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES

  • Wang, Hong-Jun;Song, Yi-Sheng
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.991-1002
    • /
    • 2011
  • An iterative algorithm is provided to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of some variational inequality in a Hilbert space. Using this result, we consider a strong convergence result for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping. Our results include the previous results as special cases and can be viewed as an improvement and refinement of the previously known results.

A VISCOSITY APPROXIMATIVE METHOD TO CES$\`{A}$RO MEANS FOR SOLVING A COMMON ELEMENT OF MIXED EQUILIBRIUM, VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

  • Jitpeera, Thanyarat;Katchang, Phayap;Kumam, Poom
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.227-245
    • /
    • 2011
  • In this paper, we introduce a new iterative method for finding a common element of the set of solutions for mixed equilibrium problem, the set of solutions of the variational inequality for a ${\beta}$inverse-strongly monotone mapping and the set of fixed points of a family of finitely nonexpansive mappings in a real Hilbert space by using the viscosity and Ces$\`{a}$ro mean approximation method. We prove that the sequence converges strongly to a common element of the above three sets under some mind conditions. Our results improve and extend the corresponding results of Kumam and Katchang [A viscosity of extragradient approximation method for finding equilibrium problems, variational inequalities and fixed point problems for nonexpansive mapping, Nonlinear Analysis: Hybrid Systems, 3(2009), 475-86], Peng and Yao [Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems, Mathematical and Computer Modelling, 49(2009), 1816-828], Shimizu and Takahashi [Strong convergence to common fixed points of families of nonexpansive mappings, Journal of Mathematical Analysis and Applications, 211(1) (1997), 71-83] and some authors.