
Commun. Korean Math. Soc. 26 (2011), No. 1, pp. 51–65

DOI 10.4134/CKMS.2011.26.1.051

ITERATIVE METHODS FOR GENERALIZED EQUILIBRIUM

PROBLEMS AND NONEXPANSIVE MAPPINGS

Sun Young Cho, Shin Min Kang, and Xiaolong Qin

Abstract. In this paper, a composite iterative process is introduced for a
generalized equilibrium problem and a pair of nonexpansive mappings. It
is proved that the sequence generated in the purposed composite iterative

process converges strongly to a common element of the solution set of a
generalized equilibrium problem and of the common fixed point of a pair
of nonexpansive mappings.

1. Introduction and preliminaries

Throughout this paper, we always assume that H is a real Hilbert space
with inner product ⟨·, ·⟩ and norm ∥ · ∥. Let C be a nonempty closed convex
subset of H and A : C → H be a nonlinear mapping.

Recall the following definitions.
(1) A is said to be monotone if

⟨Ax−Ay, x− y⟩ ≥ 0, ∀x, y ∈ C.

(2) A is said to be strongly monotone if there exists a constant α > 0 such
that

⟨Ax−Ay, x− y⟩ ≥ α∥x− y∥2, ∀x, y ∈ C.

For such a case, T is also said to be α-strongly-monotone.
(3) A is said to be inverse-strongly monotone if there exists a constant α > 0

such that

⟨Ax−Ay, x− y⟩ ≥ α∥Ax−Ay∥2, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone.

Recall that the classical variational inequality problem, denoted by V I(C,A),
is to find x ∈ C such that

(1.1) ⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C.
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It is well known that z ∈ H and x ∈ C satisfy the inequality

⟨x− z, y − x⟩ ≥ 0, ∀y ∈ C

if and only if x = PCz, where PC denotes the metric projection from H onto
C. From the above, we see that x ∈ C is a solution to the problem (1.1) if and
only if x is a fixed point of the mapping PC(I − ρA), where ρ > 0 is a constant
and I is the identity mapping.

Let A : C → H be an α-inverse-strongly monotone mapping and F be a
bifunction from C × C into R, where R denotes the set of real numbers. We
consider the following generalized equilibrium problem:

(1.2) Find x ∈ C such that F (x, y) + ⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C.

In this paper, the set of such an x ∈ C is denoted by EP (F,A), i.e.,

EP (F,A) = {x ∈ C : F (x, y) + ⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C}.

Next, we give some special cases of the problem (1.2).
(I) If A ≡ 0, the zero mapping, then the generalized equilibrium problem

(1.2) is reduced to the following equilibrium problem:

(1.3) Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C.

In this paper, the set of such an x ∈ C is denoted by EP (F ), i.e.,

EP (F ) = {x ∈ C : F (x, y) ≥ 0, ∀y ∈ C}.

(II) If F ≡ 0, then the problem (1.2) is reduced to the classical variational
inequality problem (1.1).

The problem (1.2) is very general in the sense that it includes, as special
cases, optimization problems, variational inequalities, mini-max problems, the
Nash equilibrium problem in noncooperative games and others; see, for in-
stance, [1, 4, 5, 11].

Recently, many authors considered iterative method for the problems (1.1),
(1.2) and (1.3); see, for example, [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18]
for more details.

To study the equilibrium problems (1.2) and (1.3), we may assume that F
satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C,
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C,
(A3) for each x, y, z ∈ C,

lim sup
t↓0

F (tz + (1− t)x, y) ≤ F (x, y),

(A4) for each x∈C, y 7→ F (x, y) is convex and weakly lower semi-continuous.

Let T : C → C be a nonlinear mapping. In this paper, we use F (T ) to
denote the set of fixed points of T . Recall the following definitions.
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(4) The mapping T is said to be contractive if there exists a constant λ ∈
(0, 1) such that

∥Tx− Ty∥ ≤ λ∥x− y∥, ∀x, y ∈ C.

(5) The mapping T is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

In 2005, H. Iiduka and W. Takahashi [9] considered the classical variational
inequality (1.1) and a nonexpansive mapping. To be more precise, they ob-
tained the following results.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H.
Let A be an α-inverse-strongly monotone mapping from C into H and T be
a nonexpansive mapping from C into itself such that F (T ) ∩ V I(C,A) ̸= ∅.
Suppose that x1 = x ∈ C and {xn} is given by

(1.4) xn+1 = αnx+ (1− αn)TPC(xn − λnAxn), ∀n ≥ 1,

where {αn} is a sequence in [0, 1) and {λn} is a sequence in [0, 2α]. If {αn}
and {λn} are chosen so that {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2α,

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

|αn+1 − αn| < ∞ and

∞∑
n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PF (T )∩V I(C,A)x.

Recently, S. Takahashi and W. Takahashi [17] considered the equilibrium
problem (1.3) by an iterative method. To be more precise, they proved the
following theorem.

Theorem TT1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F be a bifunction from C ×C into R satisfying (A1)-(A4) and T
be a nonexpansive mapping of C into H such that F (T )∩EP (F ) ̸= ∅. Let f be
a contraction from H into itself and let {xn} and {yn} be sequences generated
by x1 ∈ H and{

F (yn, u) +
1
rn
⟨u− yn, yn − xn⟩ ≥ 0, ∀u ∈ C,

xn+1 = αnf(xn) + (1− αn)Tyn, ∀n ≥ 1,

where {αn} ∈ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

|αn+1 − αn| < ∞,

lim inf
n→∞

rn > 0 and
∞∑

n=1

|rn+1 − rn| < ∞.
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Then {xn} and {yn} converge strongly to z ∈ F (T ) ∩ EP (F ), where z =
PF (T )∩EP (F )f(z).

Very recently, S. Takahashi and W. Takahashi [18] further considered the
generalized equilibrium problem (1.2). They obtained the following result in a
real Hilbert space.

Theorem TT2. Let C be a closed convex subset of a real Hilbert space H and
F : C × C → R be a bifunction satisfying (A1)-(A4). Let A be an α-inverse-
strongly monotone mapping from C into H and S be a non-expansive mapping
from C into itself such that F (S) ∩ EP (F,A) ̸= ∅. Let u ∈ C and x1 ∈ C and
let {zn} ⊂ C and {xn} ⊂ C be sequences generated by{

F (zn, y) + ⟨Axn, y − zn⟩+ 1
rn
⟨y − zn, zn − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = βnxn + (1− βn)S[αnu+ (1− αn)zn], ∀n ≥ 1,

where {αn} ⊂ [0, 1], {βn} ⊂ [0, 1] and {rn} ⊂ [0, 2α] satisfy

0 < c ≤ βn ≤ d < 1, 0 < a ≤ λn ≤ b < 2α,

lim
n→∞

|λn − λn+1| = 0, lim
n→∞

αn = 0 and
∞∑

n=1

αn = ∞.

Then {xn} converges strongly to z = PF (S)∩EP (F,A)u.

In this paper, motivated by the research going on in this direction, we in-
troduce a composite iterative algorithm for the problem of finding a common
element in the solution set of the generalized equilibrium problem (1.2) and
in the common fixed point set of a pair of nonexpansive mappings. Strong
convergence theorems are established in the framework of Hilbert spaces. The
results presented in this paper improve and extend the corresponding results
announced by H. Iiduka and W. Takahashi [9] and S. Takahashi and W. Taka-
hashi [17, 18] and some others.

In order to prove our main results, we also need the following definitions and
lemmas.

Recall that a Hilbert space H is said to satisfy Opial’s condition [12] if, for
any sequence {xn} ⊂ H with xn ⇀ x, then the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥,

holds for any y ∈ H such that y ̸= x.

The following lemma can be find in [1, 8].

Lemma 1.1. Let C be a nonempty closed convex subset of a real Hilbert space
H and F : C × C → R be a bifunction satisfying (A1)-(A4). Then for any
r > 0 and x ∈ H, there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.
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Further, define

Trx =
{
z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
for all r > 0 and x ∈ H. Then the following hold:

(a) Tr is single-valued,
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩,

(c) F (Tr) = EP (F ),
(d) ∥Tsx− Trx∥2 ≤ s−r

s ⟨Tsx− Trx, Tsx− x⟩,
(e) EP (F ) is closed and convex.

Lemma 1.2 ([16]). Let {xn} and {yn} be bounded sequences in a Banach space
E and let {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

Then limn→∞ ∥yn − xn∥ = 0.

Lemma 1.3 ([19]). Assume that {αn} is a sequence of nonnegative real num-
bers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(a)

∑∞
n=1 γn = ∞,

(b) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ αn = 0.

2. Main results

Now, we are ready to give our main results.

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space
H, F : C × C → R be a bifunction satisfying (A1)-(A4) and A : C → H be an
α-inverse-strongly monotone mapping. Let S and T : C → C be nonexpansive
mappings such that F := F (S) ∩ F (T ) ∩ EP (F,A) ̸= ∅ and f : C → C be
a contractive mapping with the coefficient λ ∈ (0, 1). Let {xn} be a sequence
defined by the following algorithm: x1 ∈ C and

F (wn, y) + ⟨Axn, y − wn⟩+ 1
rn
⟨y − wn, wn − xn⟩ ≥ 0, ∀y ∈ C,

zn = γnwn + (1− γn)Twn,

yn = αnf(xn) + (1− αn)zn,

xn+1 = βnxn + (1− βn)Syn, ∀n ≥ 1,
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where {rn} is a positive sequence and {αn}, {βn} and {γn} are sequences in
[0, 1]. Assume that the following conditions are satisfied

(a) 0 < c ≤ βn ≤ d < 1,
(b) 0 < a ≤ rn ≤ b < 2α and limn→∞(rn − rn+1) = 0,
(c) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(d) limn→∞ γn = 1.
Then {xn} converges strongly to q ∈ F , where q = PFf(q).

Proof. Note that wn can be rewritten as wn = Trn(xn−rnAxn) for each n ≥ 1.
Take p ∈ F . Since p = Trn(p − rnAp) and A is α-inverse-strongly monotone
and 0 < rn < 2α, we see that

(2.1)

∥wn − p∥2 = ∥Trn(xn − rnAxn)− Trn(p− rnAp)∥2

≤ ∥(xn − rnAxn)− (p− rnAp)∥2

= ∥(xn − p)− rn(Axn −Ap)∥2

= ∥xn − p∥2 − 2rn⟨xn − p,Axn −Ap⟩+ r2n∥Axn −Ap∥2

≤ ∥xn − p∥2 − rn(2α− rn)∥Axn −Ap∥2

≤ ∥xn − p∥2.

Note that

(2.2)

∥zn − p∥ ≤ γn∥wn − p∥+ (1− γn)∥Twn − p∥
≤ γn∥wn − p∥+ (1− γn)∥wn − p∥
= ∥wn − p∥.

On the other hand, we have

∥yn − p∥ = ∥αn(f(xn)− p) + (1− αn)(zn − p)∥
≤ αnλ∥xn − p∥+ αn∥f(p)− p∥+ (1− αn)∥xn − p∥
= [1− αn(1− λ)]∥xn − p∥+ αn∥f(p)− p∥.

It follows that

∥xn+1 − p∥ ≤ βn∥xn − p∥+ (1− βn)∥Syn − p∥
≤ βn∥xn − p∥+ (1− βn)∥yn − p∥
≤ [1− αn(1− λ)(1− βn)]∥xn − p∥+ αn(1− βn)∥f(p)− p∥.

Putting M1 = max
{
∥x1 − p∥, ∥f(p)−p∥

1−λ

}
, we have that ∥xn − p∥ ≤ M1 for all

n ≥ 1. Indeed, it is obvious that ∥x1 − p∥ ≤ M1. Suppose that ∥xk − p∥ ≤ M1

for some positive integer k. Then we have that

∥xk+1 − p∥ ≤ [1− αk(1− λ)(1− βk)]∥xk − p∥+ αk(1− βk)∥f(p)− p∥
≤ [1− αk(1− λ)(1− βk)]M1 + αk(1− βk)(1− λ)M1

= M1.
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This shows that ∥xn−p∥ ≤ M1 for all n ≥ 1 . Hence {xn} is bounded. In view
of Lemma 1.1, we see that

(2.3)

∥wn+1 − wn∥
≤ ∥Trn+1(I − rn+1A)xn+1 − Trn+1(I − rnA)xn∥

+ ∥Trn+1(I − rnA)xn − Trn(I − rnA)xn∥
≤ ∥(I − rn+1A)xn+1 − (I − rnA)xn∥

+ ∥Trn+1
(I − rnA)xn − Trn(I − rnA)xn∥

≤ ∥xn+1 − xn∥+ |rn+1 − rn|∥Axn∥

+
|rn+1 − rn|

rn+1
∥Trn+1(I − rnA)xn − (I − rnA)xn∥

≤ ∥xn+1 − xn∥+ |rn+1 − rn|∥Axn∥+
|rn+1 − rn|

rn+1
M2,

where M2 is an appropriate constant such that

M2 = sup{∥Trn+1(I − rnA)xn − (I − rnA)xn∥ : n ≥ 1}.

Note that

(2.4)

∥zn+1 − zn∥ ≤ γn+1∥wn+1 − wn∥+ (1− γn+1)|∥Twn+1 − Twn∥
+ |γn+1 − γn|(∥wn∥+ ∥Twn∥)

≤ ∥wn+1 − wn∥+ |γn+1 − γn|M3,

where M3 is an appropriate constant such that M3 = sup{∥wn∥+∥Twn∥ : n ≥
1}. Substituting (2.3) into (2.4), we obtain that

(2.5)

∥zn+1 − zn∥ ≤ ∥xn+1 − xn∥+ |rn+1 − rn|∥Axn∥+
|rn+1 − rn|

rn+1
M2

+ |γn+1 − γn|M3

≤ ∥xn+1 − xn∥+ (2|rn+1 − rn|+ |γn+1 − γn|)M4,

where M4 is an appropriate constant such that

M4 = max
{
sup{∥Axn∥ : n ≥ 1}, M2

a
,M3

}
.

On the other hand, we have

(2.6)

∥yn+1 − yn∥ ≤ αn+1∥f(xn+1)− f(xn)∥+ (1− αn+1)∥zn+1 − zn∥
+ |αn+1 − αn|∥f(xn)− zn∥

≤ λαn+1∥xn+1 − xn∥+ (1− αn+1)|∥zn+1 − zn∥
+ |αn+1 − αn|∥f(xn)− zn∥.

Substituting (2.5) into (2.6), we obtain that

(2.7)
∥yn+1 − yn∥

≤ ∥xn+1 − xn∥+ (2|rn+1 − rn|+ |γn+1 − γn|+ |αn+1 − αn|)M5,
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where M5 is an appropriate constant such that M5 = max{sup{∥f(xn)− zn∥ :
n ≥ 1},M4}. It follows from (2.7) that

∥Syn+1 − Syn∥
≤ ∥yn+1 − yn∥
≤ ∥xn+1 − xn∥+ (2|rn+1 − rn|+ |γn+1 − γn|+ |αn+1 − αn|)M5.

This in turn implies that

∥Syn+1 − Syn∥ − ∥xn+1 − xn∥
≤ (2|rn+1 − rn|+ |γn+1 − γn|+ |αn+1 − αn|)M5.

From the conditions (b)-(d), we see that

lim sup
n→∞

(∥Syn+1 − Syn∥ − ∥xn+1 − xn∥) ≤ 0.

In view of Lemma 1.2, we see that

(2.8) lim
n→∞

∥Syn − xn∥ = 0.

Consequently, we obtain that

(2.9) lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1− βn)∥Syn − xn∥ = 0.

It follows from (2.2) that

(2.10)

∥xn+1 − p∥2

≤ βn∥xn − p∥2 + (1− βn)∥Syn − p∥2

≤ βn∥xn − p∥2 + (1− βn)(∥αn(f(xn)− p) + (1− αn)(zn − p)∥2)
≤ βn∥xn − p∥2 + αn∥f(xn)− p∥2 + (1− βn)∥zn − p∥2

≤ βn∥xn − p∥2 + αn∥f(xn)− p∥2 + (1− βn)∥wn − p∥2.

In view (2.1), we see that

∥xn+1 − p∥2

≤ ∥xn − p∥2 + αn∥f(xn)− p∥2 − rn(1− βn)(2α− rn)∥Axn −Ap∥2.

From the conditions (a) and (b), we arrive at

a(1− d)(2α− b)∥Axn −Ap∥2

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn∥f(xn)− p∥2

≤ (∥xn − p∥+ ∥xn+1 − p∥)∥xn − xn+1∥+ αn∥f(xn)− p∥2.

It follows from (2.9) and the condition (c) that

(2.11) lim
n→∞

∥Axn −Ap∥ = 0.
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On the other hand, we have

∥wn − p∥2

= ∥Trn(I − rnA)xn − Trn(I − rnA)p∥2

≤ ⟨(I − rnA)xn − (I − rnA)p, wn − p⟩

=
1

2
(∥(I − rnA)xn − (I − rnA)p∥2 + ∥wn − p∥2

− ∥(I − rnA)xn − (I − rnA)p− (wn − p)∥2)

=
1

2
(∥xn − p∥2 + ∥wn − p∥2 − ∥xn − wn − rn(Axn −Ap)∥2)

=
1

2
[∥xn − p∥2 + ∥wn − p∥2 − (∥xn − wn∥2

− 2rn⟨xn − wn, Axn −Ap⟩+ r2n∥Axn −Ap∥2)].

This implies that

(2.12) ∥wn − p∥2 ≤ ∥xn − p∥2 − ∥xn − wn∥2 + 2rn∥xn − wn∥∥Axn −Ap∥.

Combining (2.10) with (2.12), we arrive at

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + αn∥f(xn)− p∥2 − (1− βn)∥xn − wn∥2

+ 2rn∥xn − wn∥∥Axn −Ap∥.

From the condition (a), we see that

(1− d)∥xn − wn∥2

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn∥f(xn)− p∥2

+ 2rn∥xn − wn∥∥Axn −Ap∥
≤ (∥xn − p∥+ ∥xn+1 − p∥)∥xn − xn+1∥+ αn∥f(xn)− p∥2

+ 2rn∥xn − wn∥∥Axn −Ap∥.

In view of the condition (c), (2.9) and (2.11), we obtain that

(2.13) lim
n→∞

∥xn − wn∥ = 0.

Note that

∥zn − wn∥ ≤ (1− γn)∥Twn − wn∥.
From the condition (d), we obtain that

(2.14) lim
n→∞

∥zn − wn∥ = 0.

On the other hand, we have

∥Syn − yn∥ ≤ ∥Syn − xn∥+ ∥xn − wn∥+ ∥wn − yn∥
≤ ∥Syn − xn∥+ ∥xn − wn∥+ ∥wn − zn∥+ ∥zn − yn∥
≤ ∥Syn − xn∥+ ∥xn − wn∥+ ∥wn − zn∥+ αn∥f(xn)− zn∥.



60 SUN YOUNG CHO, SHIN MIN KANG, AND XIAOLONG QIN

In view of the condition (c), (2.8), (2.13) and (2.14), we see that

(2.15) lim
n→∞

∥Syn − yn∥ = 0.

Note that PFf is a contractive mapping. It follows that PFf has a unique
fixed point. Next, we use q to denote the unique fixed point. Now, we claim
that

lim sup
n→∞

⟨f(q)− q, yn − q⟩ ≤ 0.

To show this inequality, take a subsequence {yni} of {yn} such that

(2.16) lim sup
n→∞

⟨f(q)− q, yn − q⟩ = lim
i→∞

⟨f(q)− q, yni − q⟩.

We may, without loss of generality, assume that yni ⇀ η. Since C is closed and
convex, we see that C is weakly closed. So, we have η ∈ C. Next, we show that
η ∈ F . First, we show η ∈ EP (F,A). Note that

∥yn − wn∥ ≤ ∥yn − zn∥+ ∥zn − wn∥
≤ αn∥f(xn)− zn∥+ ∥zn − wn∥.

In view of the condition (c) and (2.14), we obtain that limn→∞ ∥yn −wn∥ = 0.
It follows that wni ⇀ η. Since wn = Trn(xn − rnAxn), for any y ∈ C, we have

F (wn, y) + ⟨Axn, y − wn⟩+
1

rn
⟨y − wn, wn − xn⟩ ≥ 0.

From the condition (A2), we see

⟨Axn, y − wn⟩+
1

rn
⟨y − wn, wn − xn⟩ ≥ F (y, wn).

Replacing n by ni, we arrive at

(2.17) ⟨Axni , y − wni⟩+
⟨
y − wni ,

wni − xni

rni

⟩
≥ F (y, wni).

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)η. Since y ∈ C and η ∈ C,
we have yt ∈ C. It follows from (2.17) that

(2.18)

⟨yt − wni , Ayt⟩

≥ ⟨yt − wni , Ayt⟩ − ⟨Axni , yt − wni⟩ −
⟨
yt − wni ,

wni − xni

rni

⟩
+ F (yt, wni

)

= ⟨yt − wni , Ayt −Awni⟩+ ⟨y − wni , Awni −Axni⟩

−
⟨
yt − wni ,

wni − xni

rni

⟩
+ F (yt, wni).

From (2.13), we have Awni − Axni → 0 as i → ∞. On the other hand, from
the monotonicity of A, we obtain that

⟨yt − wni , Ayt −Awni⟩ ≥ 0.



GENERALIZED EQUILIBRIUM PROBLEMS AND NONEXPANSIVE MAPPINGS 61

It follows from (A4) and (2.18) that

(2.19) ⟨yt − η,Ayt⟩ ≥ F (yt, η).

From (A1), (A4) and (2.19), we see

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, η)

≤ tF (yt, y) + (1− t)⟨yt − η,Ayt⟩
= tF (yt, y) + (1− t)t⟨y − η,Ayt⟩,

which yields that
F (yt, y) + (1− t)⟨y − η,Ayt⟩ ≥ 0.

Letting t → 0 in the above inequality, we arrive at

F (η, y) + ⟨y − η,Aη⟩ ≥ 0.

This shows that η ∈ EP (F,A). Next, we show that η ∈ F (S). If not, we have
η ̸= Sη. In view of the Opial condition, we see that

lim inf
i→∞

∥yni − η∥ < lim inf
i→∞

∥yni − Sη∥

≤ lim inf
i→∞

{∥yni − Syni∥+ ∥Syni − Sη∥}

≤ lim inf
i→∞

{∥yni − Syni∥+ ∥yni − η∥}.

It follows that
lim inf
i→∞

∥yni
− η∥ < lim inf

i→∞
∥yni

− η∥,

which derives a contradiction. Thus, we have η ∈ F (S). Next, we show that η ∈
F (T ). If not, we have η ̸= Tη. Define a mapping Rn by Rnx = γnx+(1−γn)Tx
for each x ∈ C. It follows that Rn is nonexpansive and F (T ) = F (Rn) for each
n ≥ 1. On the other hand, we from (2.14) know that ∥Rnwn − wn∥ → 0 as
n → ∞. From the Opial condition, we see that

lim inf
i→∞

∥wni − η∥ < lim inf
i→∞

∥wni −Rniη∥

≤ lim inf
i→∞

{∥wni −Rniwni∥+ ∥Rniwni −Rniη∥}

≤ lim inf
i→∞

{∥wni −Rniwni∥+ ∥wni − η∥}.

This also derives a contradiction. This implies that η ∈ F (Rn) = F (T ) for
each n ≥ 1. This shows that η ∈ F . From (2.16), we see that

(2.20) lim sup
n→∞

⟨f(q)− q, yn − q⟩ = ⟨f(q)− q, η − q⟩ ≤ 0.

Finally, we show that xn → q as n → ∞. Note that

∥xn+1 − q∥2

= βn⟨xn − q, xn+1 − q⟩+ (1− βn)⟨Syn − q, xn+1 − q⟩
≤ βn∥xn − q∥∥xn+1 − q∥+ (1− βn)∥Syn − q∥∥xn+1 − q∥

≤ βn

2
(∥xn − q∥2 + ∥xn+1 − q∥2) + 1− βn

2
(∥yn − q∥2 + ∥xn+1 − q∥2).
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It follows that

(2.21) ∥xn+1 − q∥2 ≤ βn∥xn − q∥2 + (1− βn)∥yn − q∥2.
On the other hand, we have

∥yn − q∥2 = αn⟨f(xn)− q, yn − q⟩+ (1− αn)⟨zn − q, yn − q⟩
≤ αn⟨f(xn)− q, yn − q⟩+ (1− αn)∥zn − q∥∥yn − q∥
≤ αn⟨f(xn)− f(q), yn − q⟩+ αn⟨f(q)− q, yn − q⟩
+ (1− αn)∥xn − q∥∥yn − q∥

≤ [1− αn(1− λ)]∥xn − q∥∥yn − q∥+ αn⟨f(q)− q, yn − q⟩

≤ 1− αn(1− λ)

2
(∥xn − q∥2 + ∥yn − q∥2) + αn⟨f(q)− q, yn − q⟩.

It follows that

(2.22) ∥yn − q∥2 ≤ [1− αn(1− λ)]∥xn − q∥2 + 2αn⟨f(q)− q, yn − q⟩.
Substituting (2.22) into (2.21), we arrive at

∥xn+1 − q∥2 ≤ [1− αn(1− βn)(1− λ)]∥xn − q∥2

+ 2αn(1− βn)⟨f(q)− q, yn − q⟩.

In view of (2.16), we from Lemma 1.3 see that xn → q as n → ∞. This
completes the proof. □

Remark 2.2. Theorem 2.1 includes Theorem TT2 as a special case. To be
more precise, if f(x) = u ∈ C for each x ∈ C and γn = 1 for each n ≥ 1, then
Theorem 2.1 is reduced to Theorem TT2.

From Theorem 2.1, we have the following results on the equilibrium problem
(1.3).

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert space
H and F : C ×C → R be a bifunction satisfying (A1)-(A4). Let S : C → C be
a nonexpansive mapping such that F := F (S) ∩ EP (F ) ̸= ∅ and f : C → C be
a contractive mapping with the coefficient λ ∈ (0, 1). Let {xn} be a sequence
defined by the following algorithm: x1 ∈ C and

F (wn, y) +
1
rn
⟨y − wn, wn − xn⟩ ≥ 0, ∀y ∈ C,

yn = αnf(xn) + (1− αn)wn,

xn+1 = βnxn + (1− βn)Syn, ∀n ≥ 1,

where {rn} is a positive sequence and {αn}, {βn} and {γn} are sequences in
[0, 1]. Assume that the following conditions are satisfied

(a) 0 < c ≤ βn ≤ d < 1,
(b) 0 < a ≤ rn ≤ b < 2α and limn→∞(rn − rn+1) = 0,
(c) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

Then {xn} converges strongly to q ∈ F , where q = PFf(q).
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Proof. Putting A = 0 in Theorem 2.1, we can obtain the desired conclusion
immediately. □

Corollary 2.4. Let C be a nonempty closed convex subset of a real Hilbert space
H and A : C → H be an α-inverse-strongly monotone mapping. Let S and T :
C → C be nonexpansive mappings such that F := F (S)∩F (T )∩V I(C,A) ̸= ∅
and f : C → C be a contractive mapping with the coefficient λ ∈ (0, 1). Let
{xn} be a sequence defined by the following algorithm: x1 ∈ C and

zn = γnPC(xn − rnAxn) + (1− γn)TPC(xn − rnAxn),

yn = αnf(xn) + (1− αn)zn,

xn+1 = βnxn + (1− βn)Syn, ∀n ≥ 1,

where {rn} is a positive sequence and {αn}, {βn} and {γn} are sequences in
[0, 1]. Assume that the following conditions are satisfied

(a) 0 < c ≤ βn ≤ d < 1,
(b) 0 < a ≤ rn ≤ b < 2α and limn→∞(rn − rn+1) = 0,
(c) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(d) limn→∞ γn = 1.
Then {xn} converges strongly to q ∈ F , where q = PFf(q).

Proof. In Theorem 2.1, putting F (x, y) = 0 for each x, y ∈ C, we see that

⟨Axn, y − wn⟩+
1

rn
⟨y − wn, wn − xn⟩ ≥ 0, ∀y ∈ C

is equivalent to

⟨xn − rnAxn − wn, wn − y⟩ ≥ 0, ∀y ∈ C.

This implies that wn = PC(xn − rnAxn). From Theorem 2.1, we can obtain
the desired results immediately. □

Recall that T : C → C is said to be a k-strictly pseudocontractive [2] if there
exists a constant k ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C.

From [2], we see that if T is k-strictly pseudocontractive, then I − T is 1−k
2 -

inverse-strongly monotone.

The following theorem is not hard to derive.

Corollary 2.5. Let C be a nonempty closed convex subset of a real Hilbert space
H, F : C ×C → R be a bifunction satisfying (A1)-(A4) and TA : C → C be an
k-strictly pseudocontractive mapping. Let S and T : C → C be nonexpansive
mappings such that F := F (S) ∩ F (T ) ∩EP (F, I − TA) ̸= ∅ and f : C → C be
a contractive mapping with the coefficient λ ∈ (0, 1). Let {xn} be a sequence
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defined by the following algorithm: x1 ∈ C and
F (wn, y) + ⟨xn − TAxn, y − wn⟩+ 1

rn
⟨y − wn, wn − xn⟩ ≥ 0, ∀y ∈ C,

zn = γnwn + (1− γn)Twn,

yn = αnf(xn) + (1− αn)zn,

xn+1 = βnxn + (1− βn)Syn, ∀n ≥ 1,

where {rn} is a positive sequence and {αn}, {βn} and {γn} are sequences in
[0, 1]. Assume that the following conditions are satisfied

(a) 0 < c ≤ βn ≤ d < 1,
(b) 0 < a ≤ rn ≤ b < 1− k and limn→∞(rn − rn+1) = 0,
(c) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(d) limn→∞ γn = 1.
Then {xn} converges strongly to q ∈ F , where q = PFf(q).
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