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AN ITERATION SCHEMES FOR NONEXPANSIVE

MAPPINGS AND VARIATIONAL INEQUALITIES

Hongjun Wang and Yisheng Song

Abstract. An iterative algorithm is provided to find a common element
of the set of fixed points of a nonexpansive mapping and the set of solu-
tions of some variational inequality in a Hilbert space. Using this result,

we consider a strong convergence result for finding a common fixed point
of a nonexpansive mapping and a strictly pseudocontractive mapping.
Our results include the previous results as special cases and can be viewed

as an improvement and refinement of the previously known results.

1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, and K
be a closed convex subset of H. We write xn ⇀ x to indicate that the sequence
{xn} converges weakly to x. xn → x implies that {xn} converges strongly to
x. Let A : K → H be a nonlinear operator. The variational inequality problem
is to find a x∗ ∈ K such that

⟨v − x∗, Ax∗⟩ ≥ 0 for all v ∈ K,

which is known as the variational inequality introduced and studied by Stam-
pacchia [27] in 1964. It has been shown that a wide class of problems arising
in several branches of pure and applied sciences can be studied in the uni-
fied and general framework of variational inequalities. For example, Noor [12]
considered the local and global uniqueness of the solution and sensitivity anal-
ysis of the general variational in equalities as well as the finite convergence
of the projection-type algorithms; Noor and Bnouhachem [14] analyzed a new
three-step iterative algorithm for solving the general variational inequalities
and studied its global convergence under some mild conditions; Using the pro-
jection technique, Noor and Huang [16] established the equivalence between the
Wiener-Hopf equations and variational inequalities; Qin and Noor [18] proved
the general variational inequality problems are equivalent to solving the general
Wiener-Hopf equations. Other known results see [5, 6, 3, 8, 10, 11, 29, 30, 31]
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and the references therein. The set of solutions of the variational inequality is
denoted by V I(K,A).

Let T be a mapping with domain D(T ) and range R(T ) in E. T is called
nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ D(T ). We denote by F (T )
the set of fixed points of T . Related to the results of such a class of mappings,
see [4, 9, 19, 20, 24, 22, 23, 26, 25] and the references therein.

For every point x ∈ H, there exists a unique nearest point in K, denoted by
PKx, such that ∥x − PKx∥ ≤ ∥x − y∥ for all y ∈ K. PK is called the metric
projection of H onto K. We know that PK is a nonexpansive mapping of H
onto K. It is also known that PK satisfies

(1.1) ⟨x− y, PKx− PKy⟩ ≥ ∥PKx− PKy∥2 for all x, y ∈ H.

Moreover, PKx is characterized by the properties:

(1.2) PKx ∈ K and ⟨x− PKx, PKx− y⟩ ≥ 0 for all y ∈ K.

In the context of the variational inequality problem, this implies that

(1.3) x∗ ∈ V I(K,A) if and only if x∗ = PK(x∗ − ρAx∗), ∀ρ > 0.

This means the equivalence between the variational inequalities and fixed point
problems using the projection technique. This alternative equivalent formula-
tion has played an important role in developing the some efficient numerical
techniques for solving variational inequalities and related optimization prob-
lems. Related to the variational inequalities, is the problem of finding the fixed
points of the nonexpansive mappings, which is the subject of current interest
in functional analysis.

In order to finding the common elements of the set of the solutions of some
class of variational inequalities and the set of the fixed points of nonexpansive
mappings, Huang and Noor [10] analyzed a class of unified iteration schemes
with errors; Noor and Huang [15] considered the convergence criteria of three-
step iteration methods; Noor [13] obtained the convergence analysis of some
three-step iterative schemes for the Noor variational inequalities involving two
nonlinear operators; Qin and Noor [18] established a general iterative algorithm
for general variational inequalities and general Wiener-Hopf equations; Qin,
Cho and Kang [17] studied strong convergence of an iterative algorithm for
a system of generalized variational inequalities; Bnouhachem, Noor and Hao
[3] proved the strong convergence of some new extragradient iterative methods
for the variational inequality for an inverse strongly monotone mapping in a
Hilbert space.

Inspired and motivated by the above research, we suggest and analyze an
iterative scheme for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of some variational inequality
in a real Hilbert space. Under mild assumptions, we obtain that this iterative
sequence converges strongly to a common element of two sets. Using this result,
we obtain a strong convergence theorem for finding a common fixed point of a
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nonexpansive mapping and a strictly pseudocontractive mapping. Our results
can be viewed as refinement of the previously known results such as Huang and
Noor [10] and others.

2. Preliminaries and basic results

Let K be a nonempty closed convex subset of a Hilbert space H. A mapping
A of K into H is called inverse-strongly monotone if there exists a positive real
number α such that

(2.1) ⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2 for all x, y ∈ K;

see [6, 11, 31]. For such a case, A is called α-inverse-strongly monotone. Clearly,
the metric projection of K into H is 1-inverse-strongly monotone. If A =
I−T , where T is a nonexpansive mapping of K into itself and I is the identity
mapping of H, then A is 1

2 -inverse-strongly monotone and V I(K,A) = F (T ).
In fact,

∥Ax−Ay∥2 = ⟨Ax−Ay, x− y⟩ − ⟨x− Tx− (y − Ty), Tx− Ty⟩
= ⟨Ax−Ay, x− y⟩ − ⟨x− y, Tx− Ty⟩+ ∥Tx− Ty∥2

≤ ⟨Ax−Ay, x− y⟩ − ⟨x− y, Tx− Ty⟩+ ⟨x− y, x− y⟩
= 2⟨Ax−Ay, x− y⟩.

Recall a mapping T : K → K is said to be strictly pseudocontractive in the
sense of Browder and Petryshyn [7] if for any x, y ∈ K and some k ∈ (0, 1),

(2.2) ⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2 − k∥(x− Tx)− (y − Ty)∥2.
It is easy to see that such mappings are Lipschitz with a Lipschitz constant
L = 1+k

k and A is k-inverse-strongly monotone and V I(K,A) = F (T ) whenever
A = I − T .

If A is an α-inverse-strongly monotone mapping of K into H, then it is
obvious that A is 1

α -Lipschitz continuous. We also have that for some λ ∈
(0, 2α], I − λA is a nonexpansive mapping of K into H. Actually, for all
x, y ∈ K,
(2.3)
∥(I − λA)x− (I − λA)y∥2 = ∥x− y − λ(Tx− Ty)∥2

= ∥x− y∥2 − 2λ⟨x− y,Ax−Ay⟩+ λ2∥Ax−Ay∥2

≤ ∥x− y∥2 + λ(λ− 2α)∥Ax−Ay∥2

≤ ∥x− y∥2.
In order to proving our main results, we also the following.

Lemma 2.1 (T. Suzuki [28, Lemma 2]). Let {xn} and {yn} be two bounded
sequences in a Banach space E and βn ∈ [0, 1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = βnxn + (1− βn)yn for all integers n ≥ 0
and lim supn→∞(∥yn+1−yn∥−∥xn+1−xn∥) ≤ 0. Then limn→∞ ∥xn−yn∥ = 0.
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Lemma 2.2 (see [1, 2]). Let {λn} and {βn} be two sequences of nonnegative
real numbers and {αn} a sequence of positive numbers satisfying the conditions∑∞

n=0 γn = ∞ and limn→∞
βn

αn
= 0. Let the recursive inequality

λn+1 ≤ λn − αnψ(λn) + βn, n = 0, 1, 2, . . . ,

be given where ψ(λ) is a continuous and strict increasing function for all λ ≥
0 with ψ(0) = 0. Then {λn} converges to zero, as n → ∞; there exists a
subsequence {λnk

} ⊂ {λn}, k = 1, 2, . . . , such that

λnk
≤ ψ−1(

1∑nk

m=0 αm
+
βnk

αnk

),

λnk+1 ≤ ψ−1(
1∑nk

m=0 αm
+
βnk

αnk

) + βnk
,

λn ≤ λnk+1 −
n−1∑

m=nk+1

αm

θm
, nk + 1 < n < nk+1, θm =

m∑
i=0

αi,

λn+1 ≤ λ0 −
n∑

m=0

αm

θm
≤ λ0, 1 ≤ n ≤ nk − 1,

1 ≤ nk ≤ smax = max{s;
s∑

m=0

αm

θm
≤ λ0}.

3. Strong convergent theorems

Theorem 3.1. Let K be a nonempty closed convex subset of a Hilbert space
H. Assume that A : K → H is an α-inverse-strongly monotone mapping and
T : K → K is a nonexpansive self-mapping with V I(K,A)∩F (T ) ̸= ∅. For an
anchor point u ∈ K and an initial value x0 ∈ K and a constant λ ∈ (0, 2α),
the sequence {xn} be defined iteratively by

(3.1) xn+1 = αnu+ βnxn + (1− αn − βn)TPK(xn − λAxn).

Suppose that {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy the following conditions:

(C1) lim
n→∞

αn = 0; (C2)
∞∑

n=1
αn = ∞; (B) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1.

Then {xn} converges strongly to x∗ = PV I(K,A)∩F (T )u. Moreover, there exist a
subsequence {xnk

} ⊂ {xn} and {εn} ⊂ (0,+∞) with limn→∞ εn = 0 such that

∥xnk
− x∗∥2 ≤ 1∑nk

m=0 αm
+ 2εnk

,

∥xnk+1 − x∗∥2 ≤ 1∑nk

m=0 αm
+ (1 + 2αnk

)εnk
,

∥xn − x∗∥2 ≤ ∥xnk+1 − Pu∥2 −
n−1∑

m=nk+1

αm

θm
, nk + 1 < n < nk+1, θm =

m∑
i=0

αi,
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∥xn+1 − x∗∥2 ≤ ∥x0 − x∗∥2 −
n∑

m=0

αm

θm
≤ ∥x0 − x∗∥2, 1 ≤ n ≤ nk − 1,

1 ≤ nk ≤ smax = max{s;
s∑

m=0

αm

θm
≤ ∥x0 − x∗∥2}.

Proof. Let zn = PK(xn − λAxn) and yn = αn

1−βn
u + (1 − αn

1−βn
)Tzn. Take

p ∈ V I(K,A) ∩ F (T ). Then from the nonexpansivity of I − λA and Eq.(1.3),
we have that

∥xn+1 − p∥
≤ αn∥u− p∥+ βn∥xn − p∥+ (1− αn − βn)∥TPK(xn − λAxn)− p∥
≤ αn∥u− p∥+ βn∥xn − p∥+ (1− αn − βn)∥PK(xn − λAxn)− PK(p− λAp)∥
≤ αn∥u− p∥+ βn∥xn − p∥+ (1− αn − βn)∥(I − λA)xn − (I − λA)p∥
≤ αn∥u− p∥+ (1− αn)∥xn − p∥
≤ max{∥xn − p∥, ∥u− p∥}
...

≤max{∥x0 − p∥, ∥u− p∥}.

So the set {xn} is bounded. This implies the boundedness of the sets {yn}
and {zn} since ∥zn − p∥ ≤ ∥PK(xn − λAxn)− PK(p− λAp)∥ ≤ ∥xn − p∥ and

∥yn − p∥ ≤ αn

1− βn
∥u− p∥+ (1− αn

1− βn
)∥Tzn − p∥

≤ αn

1− βn
∥u− p∥+ (1− αn

1− βn
)∥zn − p∥.

Let M = supn∈N{∥u∥, ∥xn∥, ∥yn∥, ∥zn∥, ∥xn − p∥, ∥yn − p∥}, where N denotes
all positive integer.

Setting γn = αn

1−βn
. Then by the conditions (C1) and (B), we have limn→∞ γn

= 0 and yn = γnu+ (1− γn)Tzn. Further, we also have

∥yn+1 − yn∥
= ∥(γn+1 − γn)u+ (1− γn+1)Tzn+1 − γnTzn+1 + γnTzn+1 − (1− γn)Tzn∥
≤ |γn+1 − γn|(∥u∥+ ∥Tzn+1∥) + (1− γn)∥Tzn+1 − Tzn∥
≤ 2M |γn+1 − γn|+ (1− γn)∥PK(I − λA)xn+1 − PK(I − λA)xn∥
≤ 2M |γn+1 − γn|+ ∥xn+1 − xn∥.

Therefore, ∥yn+1−yn∥−∥xn+1−xn∥ ≤ 2M |γn+1−γn| → 0 as n→ ∞. Hence,

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

By the definition (3.1) of the sequence {xn}, we have

(3.2) xn+1 = βnxn + (1− βn)yn.
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Thus, an application of Lemma 2.1 yields

(3.3) lim
n→∞

∥yn − xn∥ = 0.

From (3.3) and limn→∞ γn = 0, we have

(3.4) lim
n→∞

∥yn − Tzn∥ = lim
n→∞

γn∥u− Tzn∥ = 0.

Combining (3.3) and (3.4) to get

(3.5) lim
n→∞

∥xn − Tzn∥ = 0.

We claim that limn→∞ ∥zn − Tzn∥ = 0. From yn = γnu+ (1− γn)Tzn and
Eq.(2.3), we have

∥yn − p∥2 ≤ γn∥u− p∥2 + (1− γn)∥Tzn − p∥2

≤ γn∥u− p∥2 + (1− γn)∥PK(xn − λAxn)− PK(p− λAp)∥2

≤ γn∥u− p∥2 + (1− γn)(∥xn − p∥2 + λ(λ− 2α)∥Axn −Ap∥2).

Therefore,

(1− γn)λ(2α− λ)∥Axn −Ap∥2

≤ γn∥u− p∥2 + ∥xn − p∥2 − ∥yn − p∥2

≤ γn∥u− p∥2 + (∥xn − p∥+ ∥yn − p∥)∥xn − yn∥.

That is,

(3.6) ∥Axn −Ap∥2 ≤ γn∥u− p∥2 + 2M∥xn − yn∥
(1− γn)λ(2α− λ)

.

On the other hand, noting Eq.(1.1),

∥zn − p∥2 = ∥PK(xn − λAxn)− PK(p− λAp)∥2

≤ ⟨zn − p, (xn − λAxn)− (p− λAp)⟩

=
1

2
[∥(xn − λAxn)− (p− λAp)∥2 + ∥zn − p∥2

− ∥(xn − λAxn)− (p− λAp)− (zn − p)∥2]

≤ 1

2
[∥xn − p∥2 + ∥zn − p∥2 − ∥(xn − zn) + λ(Ap−Axn)∥2]

=
1

2
[∥xn − p∥2 + ∥zn − p∥2 − ∥xn − zn∥2

− 2λ⟨xn − zn, Ap−Axn⟩ − λ2∥Ap−Axn∥2].

Substituting Eq.(3.6) in above equation to get

∥zn − p∥2 ≤ ∥xn − p∥2 − ∥xn − zn∥2 + 2λ⟨xn − zn, Axn −Ap⟩

≤ ∥xn − p∥2 − ∥xn − zn∥2 + 4Mλ

√
γn∥u− p∥2 + 2M∥xn − yn∥

(1− γn)λ(2α− λ)
.
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Thus,

∥yn − p∥2 ≤ γn∥u− p∥2 + (1− γn)∥zn − p∥2

≤ γn∥u− p∥2 + (1− γn)∥xn − p∥2

− (1− γn)∥xn − zn∥2 + 4Mλ

√
γn∥u− p∥2 + 2M∥xn − yn∥

(1− γn)λ(2α− λ)
.

Moreover,

(1− γn)∥xn − zn∥2 ≤ γn∥u− p∥2 + ∥xn − p∥2 − ∥yn − p∥2

+ 4Mλ

√
γn∥u− p∥2 + 2M∥xn − yn∥

(1− γn)λ(2α− λ)

≤ γn∥u− p∥2 + 2M∥xn − yn∥

+ 4Mλ

√
γn∥u− p∥2 + 2M∥xn − yn∥

(1− γn)λ(2α− λ)
.

Since γn → 0 and ∥xn − yn∥ → 0, we obtain

(3.7) lim
n→∞

∥xn − zn∥ = 0.

Combining Eq.(3.5) to get

(3.8) lim
n→∞

∥zn − Tzn∥ = 0.

Next we show that for x∗ = PV I(K,A)∩F (T )u,

(3.9) lim sup
n→∞

⟨u− x∗, xn+1 − x∗⟩ ≤ 0.

To show it, choose a subsequence {xnk
} of {xn} such that

lim sup
n→∞

⟨u− x∗, xn − x∗⟩ = lim
k→∞

⟨u− x∗, xnk
− x∗⟩.

Wemay assume that xnk
⇀ q as {xn} is bounded. Since limn→∞ ∥xn−zn∥ =

0, this means znk
⇀ q. Then we can obtain q ∈ V I(K,A)∩F (T ). In fact, since

∥znk
− q∥2 + 2⟨znk

− q, q − Tq⟩+ ∥q − Tq∥2

= ∥znk
− Tq∥2

≤ (∥znk
− Tznk

∥+ ∥Tznk
− Tq∥)2

≤ (∥znk
− Tznk

∥+ ∥znk
− q∥)2.

Consequently,

2⟨znk
− q, q − Tq⟩+ ∥q − Tq∥2 ≤ ∥znk

− Tznk
∥(∥znk

− Tznk
∥+ 2∥znk

− q∥).
Let k → ∞, noting Eq.(3.8) and znk

⇀ q, we obtain q ∈ F (T ). Similarly, since
the mapping PK(I − λA) is nonexpansive and

lim
n→∞

∥xn − zn∥ = lim
n→∞

∥xn − PK(I − λA)xn∥ = 0,
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we also obtain that q = PK(I−λA)q. Applying Eq.(1.3) to yield q ∈ V I(K,A).
Hence, it follows from Eq.(1.2) and xnk

⇀ q that

lim sup
n→∞

⟨u− x∗, xn − x∗⟩ = lim
k→∞

⟨u− x∗, xnk
− x∗⟩ = ⟨u− x∗, q − x∗⟩ ≤ 0.

Put εn = max{⟨u−x∗, xn+1−x∗⟩, 0}. Then it is obvious that {εn} ⊂ (0,+∞)
with limn→∞ εn = 0 and ⟨u− x∗, xn+1 − x∗⟩ ≤ εn.

Finally, we show that xn → x∗. In fact, since

∥zn − x∗∥ ≤ ∥PK(xn − λAxn)− PK(x∗ − λAx∗)∥ ≤ ∥xn − x∗∥,

then

∥xn+1 − x∗∥2

= ⟨βn(xn − x∗) + (1− αn − βn)(Tzn − x∗) + αn(u− x∗), xn+1 − x∗⟩
≤ (βn∥xn − x∗∥+ (1− αn − βn)∥Tzn − x∗∥)∥xn+1 − x∗∥
+ αn⟨u− x∗, xn+1 − x∗⟩

≤ (1− αn)∥xn − x∗∥∥xn+1 − x∗∥+ αnεn

≤ (1− αn)
∥xn − x∗∥2 + ∥xn+1 − x∗∥2

2
+ αnεn.

Namely,

(3.10) ∥xn+1 − x∗∥2 ≤ (1− αn)∥xn − x∗∥2 + 2αnεn.

Hence, an application of Lemma 2.2 (ψ(t) = t) yields that {xn} strongly con-
verges to x∗. And the remainder estimates now follow from Lemma 2.2. □

Corollary 3.2. Let H,T,A,K, λ be as Theorem 3.1. For an anchor point
u ∈ K and an initial value x0 ∈ K and a constant δ ∈ (0, 1), the sequence {xn}
be defined iteratively by

(3.11) xn+1 = αnu+ (1− αn)[δxn + (1− δ)TPK(xn − λAxn)].

Suppose that {αn} ⊂ (0, 1) satisfies (C1) limn→∞ αn = 0; (C2)
∑∞

n=1 αn = ∞.
Then {xn} converges strongly to PV I(K,A)∩F (T )u.

Proof. By the definition (3.11) of the sequence {xn}, we have that

xn+1 = αnu+ (1− αn)δxn + (1− δ)(1− αn)TPK(xn − λAxn).

Then

αn + (1− αn)δ + (1− δ)(1− αn) = 1 and 0 < lim
n→∞

(1− αn)δ = δ < 1.

Proceeding as in Theorem 3.1, we reach the conclusion. □

Corollary 3.3. Let H,T,A,K, λ be as Theorem 3.1. For an anchor point
u ∈ K and an initial value x0 ∈ K and a constant δ ∈ (0, 1), the sequence {xn}
be defined iteratively by

(3.12) xn+1 = δ(αnu+ (1− αn)xn) + (1− δ)TPK(xn − λAxn).
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Suppose that {αn} ⊂ (0, 1) satisfies (C1) limn→∞ αn = 0; (C2)
∑∞

n=1 αn = ∞.
Then {xn} converges strongly to PV I(K,A)∩F (T )u.

Proof. By the definition (3.12) of the sequence {xn}, we have that

xn+1 = δαnu+ (1− αn)δxn + (1− δ)TPK(xn − λAxn).

Then δαn satisfies the conditions (C1) and (C2),

δαn + (1− αn)δ + (1− δ) = 1 and 0 < lim
n→∞

(1− αn)δ = δ < 1.

Proceeding as in Theorem 3.1, we reach the conclusion. □

Corollary 3.4. Let K,H, {αn}, {βn} be as Theorem 3.1. Assumed that A :
K → H is an α-inverse-strongly monotone mapping with V I(K,A) ̸= ∅. For
an anchor point u ∈ K and an initial value x0 ∈ K and a constant λ ∈ (0, 2α),
the sequence {xn} be defined iteratively by

(3.13) xn+1 = αnu+ βnxn + (1− αn − βn)PK(xn − λAxn).

Then {xn} converges strongly to PV I(K,A)u.

4. Some applications

In this section, we prove several strong convergence theorems by using The-
orem 3.1.

Recall a mapping f : K → K is called to be weakly contractive if

∥f(x)− f(y)∥ ≤ ∥x− y∥ − φ(∥x− y∥) for all x, y ∈ K,

for some φ : [0,+∞) → [0,+∞) is a continuous and strictly increasing function
such that φ is positive on (0,+∞) and φ(0) = 0. Clearly, the mapping contains
contractive mapping as a special case (φ(t) = (1− β)t for β ∈ (0, 1)).

Rhoades [21] obtained the result-like Banach’s Contraction Mapping Prin-
ciple for the weakly contractive mapping.

Theorem R ([21, Theorem 2]). Let (X, d) be a complete metric space, and f
a weakly contractive mapping on X. Then f has a unique fixed point p in X.
Moreover, for x ∈ X, {fn(x)} strongly converges to p.

Theorem 4.1. Let K,A, T, {αn}, {βn} be as Theorem 3.1. Assume that f :
K → K is a weakly contractive mapping with a function φ. For an initial value
x0 ∈ K and a constant λ ∈ (0, 2α), the sequence {xn} be defined iteratively by

(4.1) xn+1 = αnf(xn) + βnxn + (1− αn − βn)TPK(xn − λAxn).

Then {xn} converges strongly to z = PV I(K,A)∩F (T )f(z).

Proof. For any x, y ∈ K, we have

∥PV I(K,A)∩F (T )(f(x))− PV I(K,A)∩F (T )(f(y))∥
≤ ∥f(x)− f(y)∥ ≤ ∥x− y∥ − φ(∥x− y∥).
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So, PV I(K,A)∩F (T )f is a weakly contractive mapping with a function φ. Then
by Theorem R, there exists a unique element z ∈ K such that

z = PV I(K,A)∩F (T )(f(z)).

Thus we may define a sequence {yn} in K by

yn+1 = αnf(z) + βnyn + (1− αn − βn)TPK(yn − λAyn), n = 0, 1, 2, . . . .

Then Theorem 3.1 assures yn → PV I(K,A)∩F (T )(f(z)) = z as n → ∞. For
every n, we have

∥xn+1 − yn+1∥ ≤ αn∥f(xn)− f(z)∥+ βn∥xn − yn∥
+ (1− αn − βn)∥TPK(xn − λAxn)− TPK(yn − λAyn)∥

≤ αn(∥f(xn)− f(yn)∥+ ∥f(yn)− f(z)∥) + (1− αn)∥xn − yn∥
≤ ∥xn − yn∥ − αnφ(∥xn − yn∥) + αn(∥yn − z∥ − φ(∥yn − z∥))
≤ ∥xn − yn∥ − αnφ(∥xn − yn∥) + αn∥yn − z∥.

Since ∥yn−z∥ → 0, then it follows from Lemma 2.2 that limn→∞ ∥xn−yn∥ = 0.
Hence,

lim
n→∞

∥xn − z∥ ≤ lim
n→∞

(∥xn − yn∥+ ∥yn − z∥) = 0.

Consequently, we obtain the strong convergence of {xn} to

z = PV I(K,A)∩F (T )f(z).

This completes the proof. □
Theorem 4.2. Let K,T, {αn}, {βn} be as Theorem 3.1. Assume that S :
K → K is a strictly pseudocontractive mapping in the sense of Browder and
Petryshyn with a constant k ∈ (0, 1) and f : K → K is a weakly contractive
mapping with a function φ. For an initial value x0 ∈ K and a constant λ ∈
(0, 2k), the sequence {xn} be defined iteratively by

(4.2) xn+1 = αnf(xn) + βnxn + (1− αn − βn)T ((1− λ)xn + λSxn).

Then {xn} converges strongly to z = PF (S)∩F (T )f(z).

Proof. Put A = I − S. Then A is k-inverse-strongly monotone. We have
F (S) = V I(K,A) and PK(xn − λAxn) = (1 − λ)xn + λSxn. So, by Theorem
4.1, we obtain the desired result. □

As a direct application of Theorem 3.1, we also have the following.

Theorem 4.3. Let K,T, {αn}, {βn} be as Theorem 3.1. Assume that S :
K → K is a strictly pseudocontractive mapping in the sense of Browder and
Petryshyn with a constant k ∈ (0, 1). For an anchor point u ∈ K and an
initial value x0 ∈ K and a constant λ ∈ (0, 2k), the sequence {xn} be defined
iteratively by

(4.3) xn+1 = αnu+ βnxn + (1− αn − βn)T ((1− λ)xn + λSxn).

Then {xn} converges strongly to z = PF (S)∩F (T )u.
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Remark. Our results can be viewed as refinement of Huang and Noor [10]. In
particular, when in Theorem 4.1, f(x) = (1− k)x, Theorem 2.1 of Huang and
Noor [10] is reached.
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