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Abstract. The purpose of this paper is to present an operator method
of regularization for the problem of finding a solution of a system of non-

linear ill-posed equations with a monotone hemicontinuous mapping and

N inverse-strongly monotone mappings in Banach spaces. A regulariza-
tion parameter choice is given and convergence rate of the regularized

solutions is estimated. We also give the convergence and convergence
rate for regularized solutions in connection with the finite-dimensional

approximation. An iterative regularization method of zero order in a real

Hilbert space and two examples of numerical expressions are also given
to illustrate the effectiveness of the proposed methods.

1. Introduction

The inverse problem we are interested in consists in determining an unknown
physical quantity from a finite set of data in Banach spaces (see [18]). In
practical situations, we do not know the data exactly. Instead, we have only
approximate measured data satisfying some conditions. The finite set of data
mentioned above is obtained by indirect measurements of a parameter, this
process being described by a model of system of nonlinear equations (SNEs) in
Banach spaces, which is, in general, a typical ill-posed problem.

Standard solution methods for solving SNEs are based on the use of iterative-
type regularization methods (see [5, 7, 19, 24, 25]) or Tikhonov-type regulariza-
tion methods (see [19, 30, 33, 37]) after rewriting SNEs as a single equation.
However, these methods become inefficient if the number of equations of SNEs
is large. In such a situation, Kaczmarz-type methods (see [22,23,29,31]) which
cyclically consider each equation in SNEs separately are much faster and are
often the method of choice in practice. Some modifications of this method
are studied for solving SNEs in Hilbert spaces, when each mapping is weakly
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space, Fréchet differentiable, Browder–Tikhonov regularization.

c©2018 Korean Mathematical Society

849



850 T. T. HUONG, J. K. KIM, AND N. T. T. THUY

sequentially continuous and the corresponding domain of definition is weakly
closed (see [9, 15,16,20]).

In 2006, in order to solve SNEs, Buong [10] presented a regularization
method of Browder–Tikhonov (RMBT) when each mapping is monotone, hemi-
continuous and potential, and presented the so-called generalized discrepancy
principle to choose a value of the regularization parameter. He also gave a
convergence rate estimate for the regularized solutions. For a literature con-
cerning RMBT, please refer to [11–13, 26, 27, 34]. In [11], the method RMBT
was modified for Hilbert spaces without considering the choice problem of the
regularization parameter. Note that the regularization method RMBT and
some of its variants can be used for parallel computing (see [2–4]). Some ex-
tensions and generalizations of variational inequalities have been studied in
[14,17,28,32,35,36].

In what follows, we are interested in regularization methods for solving SNEs,
where each equation in SNEs is ill-posed. The present work is motivated by
interesting ideas on regularization for SNEs involving monotone mappings in
[10].

We propose in this paper a new variant of the method RMBT of [10] and
[11] with simpler conditions imposed on mappings in the framework of Banach
spaces. We also consider the choice of the regularization parameter by the
residual principle.

The rest of this paper is divided into three sections. In Section 2, we re-
call some definitions and results that will be used in the proof of our main
theorems. In Section 3 we present a method to construct approximate solu-
tions. In Section 4 we present a choice of the regularization parameter, and
give an analysis of convergence rate results. In Section 5 we give the conver-
gence and convergence rate for regularized solutions in connection with the
finite-dimensional approximation. In the last section, we present an iterative
regularization method of zero order in a real Hilbert space and two examples
of numerical expressions.

2. Preliminaries

Let E be a real reflexive Banach space and E∗ be the its dual space, which
both are assumed to be strictly convex. For the sake of simplicity, norms in E
and in E∗ are denoted by the same symbol ‖ · ‖, and 〈x∗, x〉 denotes the value
of the continuous linear functional x∗ ∈ E∗ at the point x ∈ E. When {xn} is
a sequence in E, xn ⇀ x means that {xn} converges weakly to x, and xn → x
means the strong convergence.

In what follows, we collect some definitions on monotone operators and their
useful properties. We refer the reader [1] for more details.

Definition 2.1. A mapping A : D(A) ⊂ E → E∗ is said to be Lipschitz
continuous with a constant L > 0 (or L-Lipschitz continuous) if

‖A(x)−A(y)‖ ≤ L‖x− y‖ ∀x, y ∈ D(A).
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Definition 2.2. A mapping A : D(A) ⊂ E → E∗ is called

(i) monotone if

〈A(x)−A(y), x− y〉 ≥ 0 ∀x, y ∈ D(A);

(ii) maximal monotone if A is monotone and G(A), the graph of A, is not
properly contained in the graph of any other monotone mapping;

(iii) λ-inverse strongly monotone (or λ-cocoercive) if there exists a positive
constant λ such that

〈A(x)−A(y), x− y〉 ≥ λ‖A(x)−A(y)‖2 ∀x, y ∈ D(A).

It is well known that if F is a continuously Fréchet differentiable convex
functional on E and its gradient ∇F is 1

λ -Lipschitz continuous, then ∇F is
λ-inverse strongly monotone (see [6, Corollary 10]).

Definition 2.3. A mapping A : E → E∗ is called

(i) hemicontinuous at a point x0 ∈ D(A) if A(x0 + tx) ⇀ Ax0 as t→ 0 for
any x such that x0 + tx ∈ D(A);

(ii) demicontinuous at a point x0 ∈ D(A) if for any sequence {xn} ⊂ D(A)
such that xn → x0, the convergence Axn ⇀ Ax0 holds (it is evident
that hemicontinuity of A follows from its demicontinuity).

If A is hemicontinuous at every point of D(A), then A is said to be hemi-
continuous.

Obviously, any λ-inverse strongly monotone mapping A is monotone and
L-Lipschitz continuous with constant L = 1

λ . And any monotone and hemi-
continuous operator A : E → E∗ with D(A) = E is maximal monotone.

Definition 2.4. A reflexive Banach space E is said to be a E-space if it is
strictly convex and has the Kadec-Klee property: for any sequence {xn}, the
weak convergence xn ⇀ x and convergence of norms ‖xn‖ → ‖x‖ imply strong
convergence xn → x.

Note that Hilbert spaces as well as reflexive locally uniformly convex spaces
are E-spaces. Therefore, Lp, lp, W p

m (1 < p <∞) are also E-spaces.
Throughout this paper, we assume that the normalized duality mapping

J : E → E∗ satisfying the relation

〈x, J(x)〉 = ‖x‖2 = ‖J(x)‖2 ∀x ∈ E
is single-valued. Note that this assumption is satisfied if E∗ is strictly convex.
Furthermore, we have the following properties for the mapping J (see [1]):
J(−x) = −J(x) for all x ∈ D(J), J(tx) = tJ(x) for all x ∈ D(J) and t ∈ [0,∞),
and

(2.1) 〈J(x)− J(y), x− y〉 ≥ (‖x‖ − ‖y‖)2 ∀x, y ∈ E.
If E is a strictly convex space, then J is a strictly monotone mapping. If E∗

is strictly convex, then J is demicontinuous (hence, hemicontinuous).
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3. Problem and method

In this paper, we consider the problem of finding a solution of a system of
nonlinear ill-posed operator equations:

(3.1) Ai(x) = fi, i = 0, 1, . . . , N,

where N ≥ 1 is an integer, A0 is monotone and hemicontinuous, the other
mappings Ai, i = 1, . . . , N , are λi-inverse strongly monotone with domain
D(Ai) = E, and fi ∈ E∗ for all i = 0, 1, . . . , N .

We are interested in the situation that the solution of (3.1) does not depend
continuously on the data fi (see, for instance, [1]). In addition, we assume that
we are only given ‘noisy data’ fδi ∈ E∗ with known noise level δ > 0, that is,

(3.2) ‖fi − fδi ‖ ≤ δ, i = 0, 1, . . . , N.

Denote by Si the solution set of the i-th equation in (3.1), that is,

Si = {x ∈ E : Ai(x) = fi}.
Throughout this paper, we assume that

S :=

N⋂
i=0

Si 6= ∅.

In what follows we introduce and analyze a new variant of equation (1.5) in
[10] and variational inequality (7) in [11] in Banach spaces, where the regularized
solution is defined by a solution of the following aggregated operator equation:

(3.3) A0(x) + αµ
N∑
i=1

(Ai(x)− fδi ) + αJ(x− x+) = fδ0 ,

with a regularization parameter α > 0, a fixed number µ ∈ (0, 1), and an initial
point x+ 6∈ S.

Lemma 3.1. Let E be a reflexive Banach space, E∗ be a strictly convex Banach
space, J : D(J) = E → E∗ be a normalized duality mapping. Suppose that
A0 : D(A0) = E → E∗ is monotone and hemicontinuous, the other mappings
Ai : D(Ai) = E → E∗, i = 1, . . . , N , are λi-inverse strongly monotone. Let
fδi ∈ E∗ for all δ > 0 and all i = 0, 1, . . . , N . Assume that condition (3.2)
holds. Then, equation (3.3) has a unique solution xδα for each α > 0.

Proof. Clearly, for each fixed α > 0, the mapping

AN (·) := αµ
N∑
i=1

(Ai(·)− fδi ),

is monotone and (αµ
∑N
i=1 Li)-Lipschitz continuous with D(AN ) = E, where

Li = 1
λi

. So, AN is hemicontinuous. Consequently, the mapping A = A0 +AN

is monotone and hemicontinuous with D(A) = E. Hence, A is maximally
monotone (see [1]). Furthermore, under our assumptions, we have that J is
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demicontinuous and single-valued, and D(J) = E. Therefore, Theorem 1.7.4
(see [1]) ensures the solvability of equation (3.3). On the other hand, because
J is strictly monotone, the mapping A + αJ is also strictly monotone. Thus,
equation (3.3) has a unique solution xδα for each α > 0. �

Note that we can use an explicit method which is similar to (27) and (28)
in [2] to formulate a numerical procedure to implement equation (3.3).

4. Convergence rate result and choice of the regularization
parameter α

It is our purpose in this section to present our convergence results:

(1) The strong convergence of {xδα} to a solution of the system of equa-
tions (3.1) in the sense of regularization methods, that is, when α→ 0
and δ

α → 0 as δ → 0.
(2) The regularization parameter choice for α = α(δ) by using the principle

ρ(α) = Kδp, where ρ(α) = α‖xδα − x+‖ and K > 3.

(3) The convergence rate estimate for
{
xδα(δ)

}
under the conditions:

(i)

(4.1) ‖A0(y)− f0 − [A
′

0(x0)]∗(y − x0)‖ ≤ τ‖A0(y)− f0‖,

for y in some neighborhood of x0 ∈ S, where A
′

0(x0) denotes the

derivative of A0 at x0, [A
′

0(x0)]∗ is the adjoint of A
′

0(x0), and τ is
some positive constant;

(ii)

(4.2) 〈J(x)− J(y), x− y〉 ≥ mJ ‖x− y‖s, ∀x, y ∈ E, mJ > 0, s ≥ 2.

The conditions (4.1) and (4.2) are standard in the literature. The condi-
tion (4.1) is called tangential cone condition and is widely used in the analysis
of regularization methods for solving nonlinear ill-posed inverse problems (see
[21]).

Note that when AN ≡ 0, i.e., Ai(x) = fi for all x ∈ E and all i = 1, . . . , N ,
we have that ρ(α) = ‖A0(xδα) − fδ0‖ and the principle mentioned above is the
residual one, investigated in [1] and references therein.

Theorem 4.1. Let E be a E-space. Assume that the conditions in Lemma 3.1
are satisfied. Suppose that

S :=
N⋂
i=0

Si 6= ∅.

If a regularization parameter choice α(δ) satisfies the limit conditions

(4.3) α(δ)→ 0 and
δ

α(δ)
→ 0 as δ → 0,
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then the sequence {xδα} of associated regularized solutions of the operator equa-
tion (3.3) converges strongly in E to an x+-minimum norm solution x0, that
is,

(4.4) x0 ∈ S and ‖x0 − x+‖ = min
z∈S
‖z − x+‖,

where x+ 6∈ S is an initial guess.

Proof. It follows from (3.1) and (3.3) that

A0(xδα)−A0(z) + αµ
N∑
i=1

[Ai(x
δ
α)−Ai(z)] + αJ(xδα − x+)(4.5)

= fδ0 − f0 + αµ
N∑
i=1

(fδi − fi)

for any z ∈ S, where xδα is a solution of (3.3). By (4.5) we have that

〈A0(xδα)−A0(z) + αµ
N∑
i=1

[Ai(x
δ
α)−Ai(z)] + αJ(xδα − x+), xδα − z〉(4.6)

= 〈fδ0 − f0 + αµ
N∑
i=1

(fδi − fi), xδα − z〉.

Using (3.2) with the monotonicity of Ai, it follows from (4.6) that

(4.7) 〈J(xδα − x+), xδα − z〉 ≤
δ

α
(1 +Nαµ)‖xδα − z‖.

Consequently,

(4.8)

‖xδα − x+‖ ≤
1

2

{
‖x+ − z‖+

c(δ, α)

α

+

√(
‖x+ − z‖+

c(δ, α)

α

)2

+
4c(δ, α)

α
‖x+ − z‖

}
≤ ‖x+ − z‖+

c(δ, α)

α
+

√
c(δ, α)

α
‖x+ − z‖,

where c(δ, α) = δ(1 + Nαµ). Hence, {xδα} is bounded, because δ/α, α → 0.
Since E is reflexive, there exists a subsequence of {xδα}, that converges weakly
to some element x ∈ E. For the sake of simplicity, assume that xδα ⇀ x, as
δ/α, α→ 0.

First, we prove that x ∈ S0. Indeed, by virtue of the monotonicity of Ai and
J , it follows from (3.3) that for all x ∈ E,

〈A0(x)− fδ0 , x− xδα〉 ≥ 〈A0(xδα)− fδ0 , x− xδα〉

= αµ
N∑
i=1

〈Ai(xδα)− fδi , xδα − x〉+ α〈J(xδα − x+), xδα − x〉(4.9)
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≥ αµ
N∑
i=1

〈Ai(x)− fδi , xδα − x〉+ α〈J(x− x+), xδα − x〉.

Letting δ, α→ 0 with δ/α→ 0 in (4.9), we obtain that

〈A0(x)− f0, x− x〉 ≥ 0 ∀x ∈ E.

Thus, x ∈ S0 (see [38]). Now, we shall prove that x ∈ Si, i = 1, 2, . . . , N .
Again, from (3.3), the monotonicity of A0 and (3.2), it follows that, for any
z ∈ S,
N∑
i=1

〈Ai(xδα)− fi, xδα − z〉 =

N∑
i=1

〈fδi − fi, xδα − z〉+ α1−µ〈J(xδα − x+), z − xδα〉

+
1

αµ
〈fδ0 −A0(xδα) +A0(z)− f0, xδα − z〉

≤ δ

αµ
(1+Nαµ)‖xδα−z‖+ α1−µ〈J(xδα − x+), z − xδα〉,

which together with the λi-inverse-strongly monotonicity of Ai and the mono-
tonicity of J , implies

N∑
i=1

λi‖Ai(xδα)−Ai(z)‖2

≤ δ

α
α1−µ(1 +Nαµ)‖xδα − z‖+ α1−µ‖xδα − x+‖‖z − xδα‖.

Thus, ‖Ai(xδα) − fi‖ → 0 as δ, α → 0 with δ/α → 0. Each mapping Ai
is maximal monotone (see, [8, Theorem 1.3]). As we know (see [1, Lemma
1.4.5]), the graph G(A) of any maximal monotone mapping A from a reflexive
Banach space E to E∗ is demiclosed, that is, xn → x, yn ⇀ f or xn ⇀ x,
yn → f , where (xn, yn) ∈ G(A), imply that (x, f) ∈ G(A). Thus, Ai(x) = fi,
i = 1, 2, . . . , N , that is, x ∈ Si.

Next, since all of Si are closed convex, S is also closed convex. Therefore,
the element x0 in S with x+-minimal norm in the strictly convex Banach space
E is unique. And now, from (4.8) with z replaced by x, it implies that

‖xδα − x+‖ → ‖x− x+‖ and ‖x− x+‖ ≤ ‖z − x+‖

for all z ∈ S. Hence, xδα → x (because E is an E-space), which is the element
x0, that we have to find. �

Now, we consider the choice of ᾱ = α(δ) by using the principle ρ(α) = Kδp,
where ρ(α) = α‖xδα − x+‖ and K > 3.

Lemma 4.2. Let E, E∗, J , S, Ai, and fδi (i = 0, 1, . . . , N) be as in Lemma 3.1.
Let α0 be some positive number satisfying α0

δ ≥ c0, where c0 > 0 is independent
of δ. Then we have the following statements:

(1) The function ρ(α) is continuous on [α0,+∞) for each α0 > 0.
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(2) We have that

lim
α→+∞

ρ(α) = +∞,

provided that Ai, for each i = 1, . . . , N , is continuous at x+ and

(4.10)

∥∥∥∥∥
N∑
i=1

[
Ai(x

+)− fδi
]∥∥∥∥∥ > 0 for all δ ≥ 0,

and fδ0 = f0.

Proof. (1) Let α and β be any two numbers in [α0,+∞), α0 > 0. It follows
from (3.3) that

A0(xδα)−A0(xδβ) + αµ
N∑
i=1

[Ai(x
δ
α)− fδi ]− βµ

N∑
i=1

[Ai(x
δ
β)− fδi ]

+ αJ(xδα − x+)− βJ(xδβ − x+) = 0,

which is equivalent to the following equality

α〈J(xδα − x+)− J(xδβ − x+), xδα − xδβ〉+ (α− β)〈J(xδβ − x+), xδα − xδβ〉

+ αµ
N∑
i=1

〈Ai(xδα)−Ai(xδβ), xδα − xδβ〉

+ (αµ − βµ)

N∑
i=1

〈Ai(xδβ)− fδi , xδα − xδβ〉 ≤ 0.

This equality, together with the well-known inequality (2.1) and the mono-
tonicity of Ai, implies that

(‖xδα−x+‖−‖xδβ − x+‖)2 ≤
[
|α−β|
α0

‖xδβ−x+‖+
|αµ − βµ|

α0

N∑
i=1

‖Ai(xδβ)−fδi ‖
]

× (‖xδα‖+ ‖xδβ‖).

So, from the last inequality and (4.8) with c(δ, α)/α replaced by δ[1/α0 +

N/α1−µ
0 ], we get the continuity of ‖xδα − x+‖ at any β ∈ [α0,+∞). Thus, ρ(α)

is continuous on [α0,+∞).
(2) Now, it follows from (3.3) that

A0(xδα)−A0(x+) + αµ
N∑
i=1

[Ai(x
δ
α)−Ai(x+)] + αJ(xδα − x+)

= fδ0 −A0(x+) + αµ
N∑
i=1

[fδi −Ai(x+)].
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Acting on the last equality by xδα − x+ and using the monotonicity of Ai and
the definition of J , we obtain that

‖xδα − x+‖ ≤
‖fδ0 −A0(x+)‖

α
+

1

α1−µ

N∑
i=1

‖fδi −Ai(x+)‖.

Thus,

lim
α→+∞

‖xδα − x+‖ = 0.

Clearly, the conclusion of Lemma 4.2 is proved by using (4.10), the last equality,

ρ(α) ≥ αµ
∥∥∥∥ N∑
i=1

[
Ai(x

δ
α)− fδi

]∥∥∥∥−‖A0(xδα)− fδ0‖,

the continuity of Ai at x+, for i = 1, 2, . . . , N , and the local boundedness of
A0 (see [1, Theorem 1.3.16]). �

Now, we show that the regularization parameter α can be chosen by the
residual principle.

Theorem 4.3. Let E, E∗, J , S, Ai, and fδi (i = 0, 1, . . . , N) be as in
Lemma 3.1. Let E be an E-space and x+ be a point in E satisfying (4.10)
and x+ 6∈ S. Then, there exists at least a value ᾱ = α(δ) such that

(4.11) ᾱ ≥ (K − 3)δp

‖z − x+‖
, z ∈ S,

and

(4.12) ρ(ᾱ) = Kδp, K > 3, 0 < p ≤ 1.

In addition, letting δ → 0, we have that

(1) α(δ)→ 0;
(2) if p ∈ (0, 1) then δ

α(δ) → 0, and xδα(δ) → x0 ∈ S, where x0 is an

x+-minimum norm solution;
(3) if p = 1 and S = {x0}, then xδα(δ) converges weakly to x0, and the

inequality δ
α(δ) ≤ C holds, where C is some positive constant that does

not depend on δ.

Proof. It follows from (4.8) that

(4.13) α‖xδα − x+‖ ≤ α‖z − x+‖+ c(δ, α) +
√
αc(δ, α)‖x+ − z‖

for any z ∈ S. It is clear that, for every fixed δ > 0,

(4.14) α‖z − x+‖ < (K − 3)δp, K > 3, p ∈ (0, 1]

for sufficiently small α. Then, for α ≤ min{1/N, δ/(2‖x+−z‖)} and 0 < δ ≤ 1,
we have that

(4.15) ρ(α) < (K − 3)δp + 3δ < (K − 3)δp + 3δp = Kδp.
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Now, consider the function

(4.16) d(α) = ρ(α)−Kδp

for α ≥ α0 > 0. By Lemma 4.2, we have

lim
α→+∞

d(α) = +∞.

Obviously, by (4.15), (4.16), there is a value of α > 0 such that d(α) < 0. Since
d(α) is continuous on [α0,+∞), there exists a value α such that d(α) = 0, i.e.,
α = α(δ) satisfies (4.12) and the symbol “<” in (4.14) is replaced by “≥” for
α = α. It means that α = α(δ) satisfies (4.11).

Next, we prove that:
(1) α(δ) → 0 as δ → 0. If it is not true, then there exists a sequence

αk = α(δk) with δk → 0 such that αk → C0 (some positive constant) or
αk →∞ as k →∞.

Consider the first case, that is, αk → C0 (some positive constant), as k →∞.

From (4.12), we obtain that C0 limk→∞ ‖xδkαk
− x+‖ = 0. Now, replacing δ, α

and x in (3.3), respectively, by δk, αk and xδkαk
, and taking the limit as k → +∞,

we obtain that

(4.17) A0(x+)−A0(z) + Cµ0

N∑
i=1

[Ai(x
+)−Ai(z)] = 0

for some z ∈ S. Acting on (4.17) by x+ − z and using the monotonicity of A0

and as Ai is λi-inverse strongly monotone for i = 1, 2, . . . , N , we have

N∑
i=1

λi‖Ai(x+)−Ai(z)‖2 ≤ 0.

Consequently, ‖Ai(x+) − Ai(z)‖ = 0 for i = 1, . . . , N . It means that x+ ∈
∩Ni=1Si. Therefore, it follows from (4.17) that x+ ∈ S0. Hence x+ ∈ S, this is
a contradiction to the assumption that x+ 6∈ S.

In the second case, that is, αk →∞ as k →∞. From (4.12), we have

(4.18) lim
k→+∞

‖xδkαk
− x+‖ = lim

k→+∞

ρ(αk)

αk
= K lim

k→+∞

δpk
αk

= 0.

Again, replacing δ, α and x in (3.3), respectively, by δk, αk and xδkαk
, we obtain

that

αµk

∥∥∥∥ N∑
i=1

Ai(x
δk
αk

)− fδki

∥∥∥∥−‖A0(xδkαk
)− fδk0 ‖ ≤ αk‖x

δk
αk
− x+‖ = ρ(αk) = Kδpk.

Taking limits as k → +∞ in the last inequality and using (4.10), (4.18), the
local boundedness of A0 and the fact that αk → ∞ and δk → 0, we obtain
the inequality +∞ ≤ 0, that is impossible. So, there exists only the case that
α = α(δ)→ 0 as δ → 0.
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(2) Further, from (4.11), we obtain that

δ

α(δ)
≤ δ1−p‖z − x+‖

(K − 3)
.

So, in the case, when 0 < p < 1, δ/α → 0 as δ → 0. By Theorem 4.1,
xδα(δ) → x0 ∈ S which solves (4.4).

(3) Obviously, when p = 1, we have δ/α(δ) ≤ C = ‖z− x+‖/(K − 3). Then,
from (4.13) it implies the boundedness of {xδα(δ)}. Since E is reflexive, there

exists a subsequence {xk := xδkα(δk)} which converges weakly to some element

x∞ ∈ E as k → ∞. By (3.3) with α, δ and x replaced by αk, δk and xk,
respectively, we obtain that

‖A0(xk)− fδk0 ‖ ≤ α
µ
k

N∑
i=1

‖Ai(xk)− fδki ‖+ αk‖xk − x+‖.

Thus, ‖A0(xk) − fδk0 ‖ → 0 as k → ∞. By Lemma 1.4.5 ([1]), A0(x∞) = f0.
Now, from (3.3) and the properties of Ai, it follows that

N∑
i=1

λi‖Ai(xk)− fi‖2 ≤

〈
N∑
i=1

(fδki − fi)− α
1−µ
k J(xk − x+), xk − x∞

〉

+
δk
αµk
‖xk − x∞‖

≤
(
Nδk + α1−µ

k ‖xk − x+‖+
α1−µ
k δk
αk

)
‖xk − x∞‖.

Therefore, ‖Ai(xk)− fi‖ → 0 as k →∞, for i = 1, . . . , N . Again, by the above
reason, Ai(x∞) = fi. It means that x∞ ∈ S, i.e., x∞ = x0 and all nets {xδα(δ)}
converge weakly to x0, because S contains only one element x0. This completes
the proof. �

Theorem 4.4. Assume that the following conditions hold:

(i) A0 is continuously Fréchet differentiable and the tangential cone con-
dition (4.1) is satisfied;

(ii) there exists an element ω ∈ E such that

[A
′

0(x0)]∗ω = J(x0 − x+),

where J verifies condition (4.2); and
(iii) the regularization parameter α(δ) is chosen by the residual principle

(4.12).

Then, for 0 < p < 1, we obtain the convergence rate result:

‖xδα(δ) − x
0‖ = O(δγ) as δ → 0, γ = min

{
1− p
s− 1

,
µp

s

}
, s ≥ 2.
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Proof. From (3.2), (3.3), (4.2) and the properties of Ai, it follows that

mJ‖xδα − x0‖s ≤
〈
J(x0 − x+)− J(xδα − x+), x0 − xδα〉

≤ 〈J(x0 − x+), x0 − xδα〉

+
1

α

〈
A0(xδα)−A0(x0) + αµ

N∑
i=1

[Ai(x
δ
α)−Ai(x0)], x0 − xδα

〉
(4.19)

+
1

α

〈
f0 − fδ0 + αµ

N∑
i=1

(fi − fδi ), x0 − xδα
〉

≤ 〈J(x0 − x+), x0 − xδα〉+
δ

α
(1 +Nαµ)‖xδα − x0‖.

On the other hand, using (4.1), condition (ii) in the theorem and (3.3), we can
write 〈

J(x0 − x+), x0 − xδα
〉

= 〈ω,A′0(x0)(x0 − xδα)〉

≤ ‖ω‖(τ + 1)‖A0(xδα)−A0(x0)‖

≤ ‖ω‖(τ + 1)

[
‖fδ0 − f0‖+ αµ

N∑
i=1

‖fδi −Ai(xδα)‖+ α‖xδα − x+‖
]
,

which together with (4.19) implies that

mJ‖xδα − x0‖s ≤
δ

α
(1 +Nαµ)‖xδα − x0‖

+ ‖ω‖(τ + 1)

[
δ + αµ

N∑
i=1

‖fδi −Ai(xδα)‖+ α‖xδα − x+‖
]
.

Note that when α is chosen by (4.12), for sufficiently small δ, we have that
Nαµ(δ) ≤ 1 and ‖xδα(δ) − x

0‖ ≤ ‖xδα(δ) − x
+‖. Therefore,

mJ‖xδα(δ) − x
0‖s ≤ 2

δ

α(δ)
‖xδα(δ) − x

0‖

+ ‖ω‖(τ + 1)

[
δ + αµ

(
Nδ +

N∑
i=1

1

λi
‖xδα(δ) − x

+‖
)

+Kδp
]

≤ 2
δ

α(δ)
‖xδα(δ) − x

0‖

+ ‖ω‖(τ + 1)

[
2δ + (Kδp)µc1−µ

N∑
i=1

1

λi
+Kδp

]
≤ C1δ

1−p‖xδα(δ) − x
0‖+ C2δ

pµ,



A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS 861

where c is the right hand side of (4.8) with c(α, δ) replaced by 2δ and C1, C2

are two positive constants. Using the implication:

a, b, c ≥ 0, s > t, as ≤ bat + c =⇒ as = O(bs/(s−t) + c),

we obtain that
‖xδα(δ) − x

0‖ = O
(
δγ
)
.

This completes the proof. �

5. Finite-dimensional approximation

In computation, the finite-dimensional approximation for (3.3) is the impor-
tant problem. As usually, it can be approximated by the following equation:

An0 (x) + αµ
N∑
i=1

(Ani (x)− fnδi ) + αJn(x) = fnδ0 , α > 0, x ∈ En,(5.1)

where Ani = P ∗nAiPn, Jn = P ∗nJPn, fnδi = P ∗nf
δ
i , Pn : E → En is a linear

projection operator from E onto the finite dimensional subspace En of E,
P ∗n : E∗ → E∗n is conjugate operator to Pn, and

En ⊂ En+1, ∀n, Pnx→ x, ∀x ∈ E.
Without loss of generality, we suppose that ‖Pn‖ = 1. As also for (3.3), this
equation has a unique solution xδα,n for all δ, α > 0 and n.

Theorem 5.1. The sequence {xδα,n} of solutions of the equation (5.1) con-

verges to a solution xδα of (3.3) as n→∞.

Proof. It follows from (5.1) that

〈An0 (xδα,n)− fnδ0 , xδα,n − Pnxδα〉+ αµ
N∑
i=1

〈Ani (xδα,n)− fnδi , xδα,n − Pnxδα〉(5.2)

+ α〈Jn(xδα,n), xδα,n − Pnxδα〉 = 0.

By using (4.2), we have

αmJ‖xδα,n − Pnxδα‖s ≤ α〈J(xδα,n)− J(Pnx
δ
α), xδα,n − Pnxδα〉

= α〈Jn(xδα,n)− Jn(Pnx
δ
α), xδα,n − Pnxδα〉.

From (5.2), we have

αmJ‖xδα,n − Pnxδα‖s(5.3)

≤ 〈An0 (xδα,n)− fnδ0 , Pnx
δ
α − xδα,n〉+ αµ

N∑
i=1

〈Ani (xδα,n)− fnδi , Pnx
δ
α − xδα,n〉

+ α〈Jn(Pnx
δ
α), Pnx

δ
α − xδα,n〉.

Since Ani = P ∗nAiPn, Jn = P ∗nJPn, fnδi = P ∗nf
δ
i , it follows from (5.3) that

αmJ‖xδα,n − Pnxδα‖s(5.4)
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≤ 〈A0(xδα,n)−A0(Pnx
δ
α) +A0(Pnx

δ
α)− fδ0 , Pnxδα − xδα,n〉

+ αµ
N∑
i=1

〈Ai(xδα,n)−Ai(Pnxδα) +Ai(Pnx
δ
α)− fδi , Pnxδα − xδα,n〉

+ α〈J(Pnx
δ
α), Pnx

δ
α − xδα,n〉.

Using the monotonicity of Ai, it follows from (5.4) that

αmJ‖xδα,n − Pnxδα‖s ≤ 〈A0(Pnx
δ
α)− fδ0 , Pnxδα − xδα,n〉(5.5)

+ αµ
N∑
i=1

〈Ai(Pnxδα)− fδi , Pnxδα − xδα,n〉

+ α〈J(Pnx
δ
α), Pnx

δ
α − xδα,n〉.

Which leads to the following inequality

αmJ‖xδα,n − Pnxδα‖s(5.6)

≤
[
‖A0(Pnx

δ
α)‖+ ‖fδ0‖+ αµ

N∑
i=1

(
‖Ai(Pnxδα)‖+ ‖fδi ‖

)]
‖Pnxδα − xδα,n‖

+ α‖Pnxδα‖‖Pnxδα − xδα,n‖.

This implies that the sequence {xδα,n} is bounded. Without loss of generality,

we suppose that {xδα,n} is convergent weakly to xδα. Since Ani = P ∗nAiPn,

Jn = P ∗nJPn, fnδi = P ∗nf
δ
i , the monotonicity of Ai and J , it follows from (5.1)

that

〈A0(xn) + αµ
N∑
i=1

(Ai(x
n)− fδi ) + αJ(xn)− fδ0 , xn − xδα,n〉 ≥ 0,

where α > 0, xn = Pnx ∈ En.
By letting n → ∞ in this inequality, using the property of Ai, Pn and

xδα,n ⇀ xδα, we have

〈A0(x) + αµ
N∑
i=1

(Ai(x)− fδi ) + αJ(x)− fδ0 , x− x̄δα〉 ≥ 0 ∀x ∈ E.

Since, (3.3) has a unique solution, it follows that xδα = xδα and sequence
{xδα,n} converges weakly to xδα. From (5.5) deduce the sequence {xδα,n} con-

verges strongly to xδα as n→∞. �

Let
γn(z) = ‖(I − Pn)(z)‖, z ∈ S,

where I denotes the identity operator in E.

Theorem 5.2. Let E, E∗, J , S, Ai, and fδi (i = 0, . . . , N) be as in Lemma
3.1. Support that E is an E-space. If δ/α and γn(z)/α → 0 as α → 0 and
n→∞, then the sequence {xδα,n} converges to x0 ∈ S.
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Proof. For z ∈ S, zn = Pnz, it follows from (5.1) that

〈An0 (xδα,n)− fnδ0 , xδα,n − zn〉+ αµ
〈 N∑
i=1

(Ani (xδα,n)− fnδi ), xδα,n − zn
〉

(5.7)

+ α〈Jn(xδα,n), xδα,n − zn〉 = 0,

where xδα,n is a solution of (5.1). It follows from (5.7), PnPn = Pn, Ani =

P ∗nAiPn, fnδi = P ∗nf
δ
i , Jn = P ∗nJPn, and the monotonicity of Ai that

α〈J(xδα,n), xδα,n − zn〉

= α〈Jn(xδα,n), xδα,n − zn〉 = 〈An0 (xδα,n)− fnδ0 , zn − xδα,n〉

+ αµ
〈 N∑
i=1

(Ani (xδα,n)− fnδi ), zn − xδα,n
〉

≤ 〈A0(zn)− fδ0 , zn − xδα,n〉+ αµ
〈 N∑
i=1

(Ai(z
n)− fδi ), zn − xδα,n

〉
.

Hence, we have

α〈J(xδα,n), xδα,n − zn〉 ≤ 〈A0(zn)−A0(z) + f0 − fδ0 , zn − xδα,n〉

+ αµ
〈 N∑
i=1

(Ai(z
n)−Ai(z) + fi − fδi ), zn − xδα,n

〉
≤
[
‖A0(zn)−A0(z)‖+ ‖f0 − fδ0‖

]
‖zn − xδα,n‖(5.8)

+ αµ
N∑
i=1

[
‖Ai(zn)−Ai(z)‖+ ‖fi − fδi ‖

]
‖zn − xδα,n‖.

On the other hand, by using (3.2) and

‖Ai(zn)−Ai(z)‖ ≤ K̄γn(z),(5.9)

where K̄ is some positive constant depending only on z, it follows from (5.1)
that

〈J(xδα,n), xδα,n − zn〉 ≤
δ + K̄γn(z)

α
(1 +Nαµ)‖zn − xδα,n‖.

Hence, we have

〈J(xδα,n), xδα,n〉−〈J(xδα,n), zn〉 ≤ δ+K̄γn(z)

α
(1+Nαµ)(‖xδα,n‖+‖zn‖).(5.10)

Thus, we have

‖xδα,n‖2 − ‖xδα,n‖
[
‖z‖+

c̄(δ, α)

α

]
− c̄(δ, α)

α
‖z‖ ≤ 0,
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where c̄(δ, α) = (δ +Kγn(z))(1 +Nαµ). Consequently, we have

‖xδα,n‖ ≤
1

2

{
‖z‖+

c̄(δ, α)

α
+

√(
‖z‖+

c̄(δ, α)

α

)2

+
4c̄(δ, α)

α
‖z‖
}

(5.11)

≤ ‖z‖+
c̄(δ, α)

α
+

√
c̄(δ, α)

α
‖z‖.

Since δ/α, γn(z)/α→ 0 as α→ 0 and n→∞, it means that {xδα,n} is bounded.

Since E is reflexive, there exists a subsequence of {xδα,n}, that converges weakly

to some element x ∈ E. For the sake of simplicity, assume that xδα,n ⇀ x as
α → 0 and n → ∞. First, we prove that x ∈ S0. Indeed, by virtue of
Ani = P ∗nAiPn, Jn = P ∗nJPn, fnδi = P ∗nf

δ
i , the monotonicity of Ai and J , it

follows from (5.1) that

〈An0 (Pnx)− fnδ0 , Pnx− xδα,n〉(5.12)

= 〈An0 (Pnx)−An0 (xδα,n) +An0 (xδα,n)− fnδ0 , Pnx− xδα,n〉

≥ 〈A0(xδα,n)− fδ0 , Pnx− xδα,n〉

= αµ
N∑
i=1

〈Ai(xδα,n)− fδi , xδα,n − Pnx〉+α〈J(xδα,n), xδα,n−Pnx〉

≥ αµ
N∑
i=1

〈Ai(Pnx)− fδi , xδα,n − Pnx〉+α〈J(Pnx), xδα,n−Pnx〉, ∀x ∈ E.

Since PnPn = Pn, the last inequality has form

〈A0(Pnx)− fδ0 , Pnx− xδα,n〉 ≥ αµ
N∑
i=1

〈Ai(Pnx)− fδi , xδα,n − Pnx〉(5.13)

+ α〈J(Pnx), xδα,n − Pnx〉, ∀x ∈ E.

After tending δ, α→ 0, and n→∞ in this inequality, we obtain

〈A0(x)− f0, x− x〉 ≥ 0, ∀x ∈ E.

Thus, x ∈ S0 (see [38]). Now, we shall prove that x ∈ Si, i = 1, 2, . . . , N .
Again, from (5.1), the monotonicity of Ai, J , (3.2), and (5.9), we have

N∑
i=1

〈Ai(xδα,n)−Ai(Pnz), xδα,n − Pnz〉

=

N∑
i=1

〈Ani (xδα,n)−Ani (Pnz), x
δ
α,n − Pnz〉

=

N∑
i=1

〈Ani (xδα,n)− fnδi + fnδi −Ani (Pnz), x
δ
α,n − Pnz〉
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=

N∑
i=1

〈fnδi −Ani (Pnz), x
δ
α,n − Pnz〉+ α1−µ〈Jn(xδα,n), Pnz − xδα,n〉

+
1

αµ
〈fnδ0 −An0 (xδα,n), xδα,n − Pnz〉

≤
N∑
i=1

〈fδi −Ai(Pnz) +Ai(z)− fi, xδα,n − Pnz〉+ α1−µ〈J(Pnz), Pnz − xδα,n〉

+
1

αµ
〈fδ0 −A0(Pnz) +A0(z)− f0, xδα,n − Pnz〉

≤
[ N∑
i=1

‖fδi − fi‖+

N∑
i=1

‖Ai(z)−Ai(Pnz)‖
]
‖xδα,n − Pnz‖

+ α1−µ〈J(Pnz), Pnz − xδα,n〉

+
1

αµ

[
‖fδ0 − f0‖+ ‖A0(z)−A0(Pnz)‖

]
‖xδα,n − Pnz‖

≤ 1

αµ

[
δ + δNαµ + K̄γn(z) + K̄γn(z)Nαµ

]
‖xδα,n − Pnz‖

+ α1−µ〈J(Pnz), Pnz − xδα,n〉, ∀z ∈ S.

Which together with the λi-inverse strongly monotone property of Ai implies

N∑
i=1

λi‖Ai(xδα,n)−Ai(Pnz)‖2

≤
N∑
i=1

〈Ai(xδα,n)−Ai(Pnz), xδα,n − Pnz〉

≤
[ δ
α
α1−µ(1 +Nαµ) +

γn(z)

α
α1−µ(K̄ +NK̄αµ)

]
‖xδα,n − Pnz‖

+ α1−µ‖Pn(z)‖‖Pnz − xδα,n‖, ∀z ∈ S.

Thus, ‖Ai(xδα,n) − Ai(z)‖ → 0 as δ, α → 0, n → ∞ with δ/α → 0, and
γn(z)/α → 0. Note that, each mapping Ai is maximal monotone (see [8],
Theorem 1.3, p. 40). As we know that (see [1], Lemma 1.4.5, p. 39), the graph
G(A) of any maximal monotone mapping A from a reflexive Banach space E
to E∗ is demiclosed, that is, xn → x, yn ⇀ f or xn ⇀ x, yn → f , where
(xn, yn) ∈ G(A), imply that (x, f) ∈ G(A). Thus, Ai(x̄) = fi, i = 1, 2, . . . , N ,
that is, x̄ ∈ Si. Next, since each Si is closed convex, S is also closed convex.
Therefore, the element x0 in S with minimal norm in the strictly convex Banach
space E is unique. And now, from (5.11) with z replaced by x̄, it implies that
‖xδα,n‖ → ‖x̄‖ and ‖x̄‖ ≤ ‖z‖, for all z ∈ S. Hence, xδα,n → x (because E is an

E-space), which is the element x0, that we have to find. �

Theorem 5.3. Assume that the following conditions hold:



866 T. T. HUONG, J. K. KIM, AND N. T. T. THUY

(i) A0 is continuously Fréchet differentiable with (4.1) for x = x0, and the
other each Ai is Li-Lipschitz continuous in some neighbourhood of x0;

(ii) there exists an element ω ∈ E such that

[A′0(x0)]∗ω = J(x0),

where J satisfies condition (4.2);
(iii) the parameter α = α(δ) is chosen by α ∼ (δ + γn)ν , 0 < ν < 1, where

γn = maxx∈S γn(x).

Then

‖xδα,n − x0‖ = O((δ + γn)h + γln),

where

h = min

{
1− ν
s− 1

,
µν

s

}
, l = min

{
1

s
,

ν

s− 1

}
, s ≥ 2.

Proof. Replacing Pnx
δ
α by x0n = Pnx

0 in (5.5), we obtain

αmJ‖xδα,n − x0n‖s(5.14)

≤ 〈A0(x0n)− fδ0 , x0n − xδα,n〉+ αµ
N∑
i=1

〈Ai(x0n)− fδi , x0n − xδα,n〉

+ α〈J(x0n), x0n − xδα,n〉.
We have

〈A0(x0n)− fδ0 , x0n − xδα,n〉 ≤
(
‖A0(x0n)−A0(x0)‖+ δ

)
‖x0n − xδα,n‖(5.15)

≤ (C̃0γn + δ)‖x0n − xδα,n‖,

where C̃0 is a positive constant depending only on x0. And also, we have

N∑
i=1

〈Ai(x0n)− fδi , x0n − xδα,n〉(5.16)

≤
[ N∑
i=1

(
‖Ai(x0n)−Ai(x0)‖+ δ

)]
‖x0n − xδα,n‖

≤
( N∑
i=1

C̃iγn +Nδ
)
‖x0n − xδα,n‖

≤
(
C̃γn +Nδ

)
‖x0n − xδα,n‖,

where C̃i is a positive constant depending only on x0 and C̃ =
∑N
i=1 C̃i, and

〈J(x0n)− J(x0), x0n − xδα,n〉 ≤ C(R̃)γνn‖x0n − xδα,n‖, 0 < ν < 1,(5.17)

where R̃ > ‖x0‖ and

〈J(x0), x0n − xδα,n〉 = 〈J(x0), x0n − x0〉+ 〈J(x0), x0 − xδα,n〉(5.18)
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= 〈J(x0), x0n − x0〉+ 〈ω,A′0(x0)(x0 − xδα,n)〉

≤ ‖J(x0)‖‖x0n − x0‖+ ‖ω‖‖A′0(x0)(x0 − xδα,n)‖

≤ ‖x0‖‖(I − Pn)x0‖+ ‖ω‖‖A′0(x0)(x0 − xδα,n)‖

≤ R̃γn + ‖ω‖(τ + 1)‖A0(xδα,n)− f0‖,

and

‖A0(xδα,n)− f0‖(5.19)

≤ δ + ‖A0(xδα,n)− fδ0‖

≤ δ + αµ
N∑
i=1

‖Ai(xδα,n)− fδi ‖+ α‖xδα,n‖

≤ δ + αµ
N∑
i=1

(
‖Ai(xδα,n)−Ai(x0)‖+ δ

)
+ α‖xδα,n‖

≤ δ + αµ
N∑
i=1

(
‖Ai(xδα,n)−Ai(x0n)‖+ ‖Ai(x0n)−Ai(x0)‖+ δ

)
+ α‖xδα,n‖

≤ δ + αµ
N∑
i=1

Li‖xδα,n − x0n‖+ αµC̃γn + αµNδ + α‖xδα,n‖.

Thus, we have

αmJ‖xδα,n − x0n‖s(5.20)

≤ (C̃0γn + δ)‖x0n − xδα,n‖+ αµ
(
C̃γn +Nδ

)
‖x0n − xδα,n‖

+ αC(R̃)γνn‖x0n − xδα,n‖+ αR̃γn

+ α‖ω‖(τ+1)
[
(1 + αµN)δ+αµ

N∑
i=1

Li‖xδα,n−x0n‖+αµC̃γn+α‖xδα,n‖
]

≤
[
C̃0γn + δ + αµ(C̃γn +Nδ) + αC(R̃)γνn + αµ+1‖ω‖(τ + 1)

N∑
i=1

Li

]
× ‖x0n − xδα,n‖+ αR̃γn + α‖ω‖(τ + 1)δ(1 +Nαµ)

+ αµ+1‖ω‖(τ + 1)C̃γn + α2‖ω‖(τ + 1)‖xδα,n‖.

The last inequality implies that

mJ‖xδα,n − x0n‖s(5.21)

≤
[ C̃0γn + δ

α
+ αµ

C̃γn +Nδ

α
+ C(R̃)γνn + αµ‖ω‖(τ + 1)

N∑
i=1

Li

]
‖x0n − xδα,n‖
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+ R̃γn + ‖ω‖(τ + 1)δ(1 +Nαµ)

+ αµ‖ω‖(τ + 1)C̃γn + α‖ω‖(τ + 1)‖xδα,n‖.
If α is chosen by condition (iii), then α ≤ 1, from (5.21) we have

‖xδα,n − x0n‖s ≤
[
C1(γn + δ)1−ν + C2(γn + δ)µν + C3γ

ν
n

]
‖x0n − xδα,n‖(5.22)

+ C4γn + C5(γn + δ)µν ,

where Ci, i = 1, . . . , 5 are some positive constants. Using the implication

a, b, c ≥ 0, s > t, as ≤ bat + c⇒ as = O(bs/(s−t) + c),

we obtain

‖xδα,n − x0n‖ = O((δ + γn)h + γln).

Thus

‖xδα,n − x0‖ = O((δ + γn)h + γln). �

6. Iterative regularization method of zero order

Now we consider the following iterative regularization method of zero order,
where zm+1 is defined by [10]
(6.1)

zm+1 = zm − βm

[
(A0(zm)− f0) + αµm

N∑
i=1

(Ai(zm)− fi) + αµ+1
m (zm − x+)

]
, z0 ∈ H,

where H is a real Hilbert space, {αm} and {βm} are sequences of positive
numbers.

We have the following results and prove them by similar methods to Theo-
rems 2.4 and 2.5 in [34].

Theorem 6.1. Assume that the conditions in Lemma 3.1 are satisfied. Then
we have the following statements.

(1) For each αm > 0, problem

(6.2) A0(x) + αµm

N∑
i=1

(Ai(x)− fi) + αµ+1
m (x− x+) = f0

has a unique solution xm.
(2) If 0 < αm ≤ 1, αm → 0 as m → ∞, then limm→∞ xm = x0 ∈ S with

the minimum norm x+.

Theorem 6.2. Assume that {αm} and {βm} in the problem (6.1) satisfy the
following conditions:

(i) 1 ≥ αm ↘ 0, βm → 0 as m→ +∞;

(ii) limm→+∞
|αm+1 − αm|
βmα

2(µ+1)
m

= 0, limm→+∞
βm

αµ+1
m

= 0;

(iii)
∑∞
m=0 βmα

µ+1
m = +∞.
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Then, limm→+∞ zm = x0 ∈ S with the minimum norm x+.

Remark 6.1. There are 2 advantages of methods (6.1) in comparison with the
other regularization algorithms listed below:

(i) Weaker assumption on operators Ai, i = 0, 1, . . . , N .
To be more specific, iterative regularization method of zero order in

[10] was considered for solving system of equations with A0, A1, . . . , AN
were monotone potential operators. Iterative regularization method of
zero order in [34] was considered for solving system of equations with
A0, A1, . . . , AN were inverse-strongly monotone operators. Iterative
regularization method of zero order in (6.1) was considered for solving
system of equations with A0 is hemicontinuous monotone operator and
A1, . . . , AN were inverse-strongly monotone operators.

(ii) Faster rate of convergence (see Examples 6.3 and 6.4 for more details).

Now we give two examples of numerical expressions to illustrate the effec-
tiveness of the proposed methods. We consider the problem: find an element
x0 ∈ H such that

ϕj(x
0) = min

x∈H
ϕj(x), i = 0, 1, . . . , N,(6.3)

where ϕj is weakly lower semi-continuous proper convex function in a real
Hilbert space H.

Example 6.3. We consider the case, when the function ϕj(x) is defined by

ϕj(x) =
1

2
〈Ajx, x〉.

Then x0 is a solution to the problem (6.3) if and only if x0 ∈ S withAjx = ϕ′j(x)

where Aj = BTj Bj is an M×M matrix, Bj = (bjlk)Ml,k=1 is determined as follows

(6.4)
bj1k = sin(j + 1), j = 0, 1, 2, k = 1, 2, . . . ,M,

bj2k = 2 sin(j + 1), j = 0, 1, 2, k = 1, 2, . . . ,M,

bjlk = cos((j + 1)l) sin((j + 1)k), j = 0, 1, 2, l = 3, . . . ,M, k = 1, 2, . . . ,M.

We have x0 = (0, . . . , 0)T ∈ RM is a solution of (6.3). Since det(Aj) = 0,
j = 0, 1, 2, each equation in Aj(x) = 0 is ill-posed. Consequently, the problem
(6.3) in this case is ill-posed too. We apply method (2.11) in [34] with αm =
(1 +m)−1/12, βm = (1 +m)−1/2, z0 = (1, . . . , 1)T ∈ RM and our method (6.1)
with the same starting point z0 and the same value of parameters αm, βm
with choosing µ = 1/2, M = 50, we obtain the following table and figure of
numerical results:

From Table 6.1 and Table 6.2, we can see that the iterative regularization
method (6.1) converges faster than the iterative regularization method (2.11)
in [34].
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Table 6.1. Numerical of method (6.1)

m err1 ‖x0 − z1m‖
10 1.3639× 10−3 1.8174× 10−4

20 6.0425× 10−5 8.0625× 10−6

50 2.2479× 10−7 3.0007× 10−8

100 7.0664× 10−10 9.4203× 10−11

122 9.9058× 10−11 1.3198× 10−11

Table 6.2. Numerical of method (2.11) in [34]

m err2 ‖x0 − z2m‖
10 7.6449× 10−3 1.0171× 10−3

20 7.1677× 10−4 9.4292× 10−5

50 1.2291× 10−5 1.5681× 10−6

100 2.2234× 10−7 2.6792× 10−8

122 5.8411× 10−8 6.8293× 10−9

Figure 6.1. Numerical of methods (6.1) and (2.11) in [34]

Example 6.4. We consider the case, when the function ϕj : L2[0, 1] → R ∪
{+∞} is defined by

ϕj(x) = F

(
1

2
〈Bj(x), x〉

)
, j = 0, 1, 2,

with F : R→ R is chosen as follows

F (t) =

{
0, t ≤ a0,

c(t− a0), t > a0,

where c, a0 are the positive constants, and

Bj : L2[0, 1]→ L2[0, 1]
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are defined by

Bjx(t) =

∫ 1

0

kj(t, s)x(s)ds, j = 0, 1, 2,

with

k0(t, s) =

{
s(1− t), s ≤ t,
t(1− s), s > t,

k1(t, s) =


(1− s)2st2

2
− (1− s)2t3(1 + 2s)

6
+

(t− s)3

6
, t ≥ s,

s2(1− s)(1− t)2

2
+
s2(1− t3)(2s− 3)

6
+

(s− t)3

6
, t < s,

k2(t, s) = ts

are kernel functionals defined on the square {0 ≤ t, s ≤ 1}. We can approximate
ϕj(x) by the following function

ϕjε(x) = Fε

(
1

2
〈Bj(x), x〉

)
, j = 0, 1, 2,

with Fε : R→ R is chosen as follows

Fε(t) =


0, t ≤ a0,

c(t− a0)2

2ε
, a0 < t ≤ a0 + ε,

c(t− a0 −
ε

2
), t > a0 + ε.

Then, x of (6.3) is a solution of operator equation

ϕ′jε(x) = fj ,

where fj = θ ∈ L2[0, 1], and

ϕ′jε(x) = F ′ε

(
1

2
〈Bj(x), x〉

)
Bj(x)

are monotone operators from L2[0, 1] to L2[0, 1], with

F ′ε(t) =


0, t ≤ a0,

c(t− a0)

ε
, a0 < t ≤ a0 + ε,

c t > a0 + ε.

We compute the regularized solutions xδα,n by approximating H = L2[0, 1] by
the sequence of the linear subspaces Hn, which is a set of all linear combinations
of {φ1, φ1, . . . , φn} defined on uniform grid of n+ 1 points in [0, 1]

φk(t) =

{
0, t 6∈ (tk−1, tk],

1, t ∈ (tk−1, tk],
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and

Pn(x) =

n∑
k=1

x(tk)φk(t).

We have ‖Pn‖ = 1 and ‖(I − Pn)x‖ = O(n−1), for all x ∈ L2[0, 1]. Then, the
finite-dimensional regularized equation (5.1) is of the form

Ãn0 (x̃) + αµ

(
Ãn1 (x̃) + Ãn2 (x̃)− fnδ1 − fnδ2

)
+ αx̃ = fnδ0 , α > 0, x̃ ∈ Hn,

with

Ãnj (x̃) = ϕ′jε(x̃) = F ′ε

(
1

2
〈B̃j(x̃), x̃〉

)
B̃j(x̃),

where

Ãnj (x̃) =

(
ϕ′jε(x̃1), ϕ′jε(x̃2), . . . , ϕ′jε(x̃n)

)T
,

B̃j =

(
lkj(tu, tv)

)n
u,v=1

, l =
1

n
,

fnδj = (δ, δ, . . . , δ)T ,

x̃ = (x̃1, x̃2, . . . , x̃n)T , x̃k = x(tk), k = 1, 2, . . . , n.

Taking account of the iterative method (2.11) in [34] with z0 = (1.5, . . . , 1.5)T ∈
Rn, αm = (1+m)−1/16, βm = (1+m)−1/2 and our method (6.1) with the same
starting point z0 and the same value of parameters αm, βm with choosing
µ = 1/2, n = 50, δ = 10−10, we obtain the following table of numerical results:

Table 6.3. Numerical of method (6.1)

m err1 ‖x0 − z1m‖
10 3.3993× 10−2 1.0652× 10−1

20 2.4607× 10−3 1.254× 10−2

50 2.737× 10−6 2.5522× 10−5

100 3.1152× 10−8 4.5182× 10−7

200 1.0017× 10−10 2.6778× 10−9

Table 6.4. Numerical of method (2.11) in [34]

m err2 ‖x0 − z2m‖
10 5.759× 10−2 2.4046× 10−1

20 6.7532× 10−3 4.8016× 10−2

50 2.2141× 10−5 3.0834× 10−3

100 9.4185× 10−7 2.1547× 10−5

200 2.1407× 10−8 7.9956× 10−7
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Figure 6.2. Numerical of methods (6.1) and (2.11) in [34]
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