• Title/Summary/Keyword: invariant state

Search Result 185, Processing Time 0.029 seconds

Simplification of State Invariant with Mixed Reachability Analysis (혼합 도달성 분석을 이용한 상태 불변식의 단순화)

  • 권기현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.212-218
    • /
    • 2003
  • State invariant is a property that holds in every reachable state. It can be used not only in understanding and analyzing complex software systems, but it can also be used for system verifications such as checking safety, liveness, and consistency. For these reasons, there are many vital researches for deriving state invariant from finite state machine models. In previous works every reachable state is to be considered to generate state invariant. Thus it is likely to be too complex for the user to understand. This paper seeks to answer the question `how to simplify state invariant\ulcorner`. Since the complexity of state invariant is strongly dependent upon the size of states to be considered, so the smaller the set of states to be considered is, the shorter the length of state invariant is. For doing so, we let the user focus on some interested scopes rather than a whole state space in a model. Computation Tree Logic(CTL) is used to specify scopes in which he/she is interested. Given a scope in CTL, mixed reachability analysis is used to find out a set of states inside it. Obviously, a set of states calculated in this way is a subset of every reachable state. Therefore, we give a weaker, but comprehensible, state invariant.

Feasible and Invariant Sets For Input Constrained Linear Parameter Varying Systems

  • Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1911-1916
    • /
    • 2003
  • Parameter set of an LPV system is divided into a number of subsets so that robust feedback gains may be designed for each subset of parameters. A concept of quasi-invariant set is introduced, which allows finite steps of delay in reentrance to the set. A feasible and positively invariant set with respect to a gain-scheduled state feedback control can be easily obtained from the quasi-invariant set. A receding horizon control strategy can be derived based on this feasible and invariant set.

  • PDF

RECURSIVE FIR FILTERS FOR DISCRETE TIME-INVARIANT STATE-SPACE MODELS (순환형 FIR 필터)

  • Gwon, O-Gyu;Gwon, Uk-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1986.07a
    • /
    • pp.140-144
    • /
    • 1986
  • In this paper an FIR(finite impulse response) filter and smoother are introduced for discrete time-invariant state-space models with driving noises. The FIR structure not only quarantees the BIBO stability and the robustness to parameter changes but also improves the filter divergence problem. It is shown that the impulse responses of the FIR filter and the smoother are obtained by Riccati-type difference equations and that they are to be time-invariant and reduced to very simple forms. For implementational purpose, recursive forms of the FIR filler and smoother are derived with each other used as the adjoint variable.

  • PDF

Multirate LQG Control Based on the State Expansion (상태 공간 확장에 의한 멀티레이트 LQG 제어)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one Period, the time-varying system equation can be constructed into the time-invariant equation. In this paper, an alternative time-invariant model is proposed, the design method and the stability of the LQG (Linear Quadratic Gaussian) control scheme for the realization are presented. The realization is flexible to construct to the sampling rate variations, the closed-loop system is shown to be asymptotically stable even in the inter-sampling intervals and it has smaller computation in on-line control loop than the previous time-invariant realizations.

  • PDF

A Study on The State Estimation of The Time-Invariant Linear Systems via The Improved Parameter Estimation Method for The Block Pulse Coefficients (개선된 블록 펄스 계수 추정 기법을 이용한 선형 시불변계의 상태 추정에 관한 연구)

  • Kim, Tai-Hoon;Kim, Jin-Tae;Chung, Je-Wook;Sim, Jae-Seon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.137-143
    • /
    • 2002
  • Because Block Pulse functions are used in a variety of fields such as the analysis and controller design of systems, it is necessary to find the more exact value of the Block Pulse series coefficients. This paper presents a method for the state estimation of the time-invariant linear systems via the improved estimation method for the Block Pulse coefficients by using the Simpson's rule. The proposed method using the Simpson's rule improve the accuracy of the Block Pulse coefficients.

Input Constrained Receding Horizon Control Using Complex Polyhedral Invariant Region (복소형 다각형 불변영역을 이용한 입력제한 예측제어)

  • 이영일;방대인;윤태웅;김기용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.991-997
    • /
    • 2002
  • The concept of feasible & invariant region plays an important role to derive closed loop stability and achie adequate performance of constrained receding horizon predictive control. In this paper, we define a complex polyhedral feasible & invariant set for all stabilizable input-constrained linear systems by using a complex transform and propose a one-norm based receding horizon control scheme using these invariant sets. In order to get a larger stabilizable set, a convex hull of invariant sets which are defined for different state feedback gains is used as a target invariant set of the constrained receding horizon control. The proposed constrained receding horizon control scheme is formulated so that it can be solved via linear programming.

Invariant Set Based Model Predictive Control of a Three-Phase Inverter System (불변집합에 기반한 삼상 인버터 시스템의 모델예측제어)

  • Lim, Jae-Sik;Park, Hyo-Seong;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • This paper provides an efficient model predictive control for the output voltage control of three-phase inverter system which includes output LC filters. Use of SVPWM (Space Vector Pulse-Width-Modulation) and the rotating d-q frame is made to obtain an input constrained dynamic model of the inverter system. From the measured/estimated output current and reference output voltage, corresponding equilibrium values of the inductor current and the control input are computed. Derivation of a feasible and invariant set around the equilibrium state is made and then a receding horizon strategy which steers the current state deep into the invariant set is proposed. In order to remove offset error, use of disturbance observer is made in the form of state estimator. The efficacy of the proposed method is verified through simulations.

Condition of pseudohyperbolic structure

  • Kim, Jong-Heon;George Osipenko
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.193-201
    • /
    • 1997
  • The paper presens results on the perturbation problem of invariant manifolds of differential equations. It is well-known that if there is a pseudohyperbollic structure on an invariant manifold then one is strongly indestructible. The set of strongly inderstructible invariant manifolds is wider than the set of persistent (normally hyperbolic) manifolds. The following theorem is main result of the paper: if the condition of transversality holds on an invariant manifold, except, possibly, for the non-degenerate strong sources and non-degenerate strong sinks, then there is the pseudohyperbolic structure on the invariant manifold. From this it follows the conditions for the indestructibility of locally non-unique invariant manifolds. An example is considered.

  • PDF

A study on the Performance Improvement of Position Controller in DC Servo Motor System (직류서보전동기 위치제어기의 성능향상에 관한 연구)

  • Yoo, Jong-Gul;Lee, Kee-Sang;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.555-558
    • /
    • 1991
  • The IESF(Integral Error and State Feedback) controller, which incorporates state feedback as a modern control scheme and integral action as a classical control scheme, has better performance than that of the conventional PID controller in linear time-invariant systems. The IESF controller requires the measurement of all the state variables. But, unfortunately, it may be difficult or impossible to measure all state variables in many applications. And the IESF controller is applicable only to pole-assignable linear time-invariant system without time delay. In this paper, new IESF controller structure was proposed which performs feedback with only measurable state variables. In order to estimate the unmeasurable state variables. It was adopted the filter mode by full-order obserber. The good performance and effectiveness of the proposed controller was confirmed by computer simulation.

  • PDF

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.