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Robust Stability Condition and Analysis on Steady-State
Tracking Errors of Repetitive Control Systems

Tae-Yong Doh and Jung Rae Ryoo

Abstract: This paper shows that design of a robustly stable repetitive control system is
equivalent to that of a feedback control system for an uncertain linear time-invariant system
satisfying the well-known robust performance condition. Once a feedback controller is designed
to satisfy the robust performance condition, the feedback controller and the repetitive controller
using the performance weighting function robustly stabilizes the repetitive control system. It is
also shown that we can obtain a steady-state tracking error described in a simple form without
time-delay element if the robust stability condition is satisfied for the repetitive control system.
Moreover, using this result, a sufficient condition is provided, which ensures that the least upper
bound of the steady-state tracking error generated by the repetitive control system is less than or
equal to the least upper bound of the steady-state tracking error only by the feedback system.

Keywords: Least upper bound, repetitive control, robust performance, robust stability, steady-

state tracking error, uncertain linear time~-invariant system.

1. INTRODUCTION

Repetitive control is a specialized control scheme
for tracking periodic reference commands and/or
attenuating periodic exogenous disturbances. Its
highly accurate tracking property originates from a
periodic signal generator implemented in the
repetitive controller. However, the positive feedback
loop to generate the periodic signal decreases the
stability margin. Therefore, the tradeoff between
stability and tracking performance has been
considered as an important factor in the repetitive
control system. Hara er al [1] derived sufficient
conditions for the stability of a repetitive control
system and a modified repetitive control system,
which sacrifices tracking performance at high
frequencies for system stability. Srinivasan and Shaw
[2] examined the absolute and relative stability of
repetitive  control systems using the regeneration
spectrum and indicated that their results provide
improved insights into design tradeoffs. Giiven¢ [3]
applied the structured singular value to repetitive
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control systems in order to determine their stability
and performance robustness in the presence of
structured parametric modeling error in the plant.
Weiss and Hifele [4] analyzed the stability and
robustness of the MIMO repetitive control system
based on regular linear system theory. Li and Tsao [5]
addressed the analysis and synthesis of robust stability
and robust performance repetitive control systems.
Doh and Chung [6] proposed a method to design a
repetitive control system ensuring robust stability for
linear systems with time-varying uncertainties. M.-C.
Tsai and W.-S. Yao derived upper and lower bounds of
the repetitive controller parameters ensuring both
stability and desired performance [7], as well as an
upper bound for the square integral of the tracking
error over a one time period of periodic input signals
based on Fourier analysis [8]. R. C Costa-Castell ef al.
proposed a new repetitive controller with passivity.
Therefore, when applied to passive piants, closed-loop
stable behavior is guaranteed [9]. Dang and Owens
presented a simple adaptive multi-periodic repetitive
control scheme and analyzed system stability by the
Lyapunov second method [10]. Zhou et al. derived a
robust stability criterion for dual-mode structure
repetitive control in terms of odd-harmonic and even-
harmonic repetitive control gain [11]. Stenbuch ef al.
presented a design method of high-order repetitive
controllers that is obtained by solving a convex
optimization problem [12].

In most previous researches, a repetitive controller
is accompanied with a feedback controller. In general,
the repetitive controller is added to the existing
feedback control system to improve the tracking
performance, and the design problems of the feedback



Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems 961

controller and the repetitive controller have been
considered as two totally separate problems. Moreover,
the cutoff frequency of the g-filter in the repetitive
controller should be found by many trials and errors.
In this paper, we show that once a feedback controller
is designed to satisfy the well known robust
performance condition, no effort is required for the
design of a repetitive controller, and the repetitive
controller including the performance weighting
function robustly stabilizes the uncertain repetitive
control system. This effect can be accomplished by
replacing the g-filter in the repetitive controller with
the performance weighting function that is used in the
design of the feedback controller. Thus, both the
feedback controller and the repetitive controller can
be simultaneocusly designed using several tools from
robust control theory such as #,, W -synthesis and

model matching [13,14]. It is also shown that if the
robust stability condition is satisfied, the steady-state
tracking error can be described in a simple form
without the time-delay element. Based on the
description of the steady-state tracking error, a
sufficient condition is provided, which ensures that
the least upper bound of the steady-state tracking error
generated by the repetitive control system is less than
or equal to the least upper bound of the steady-state
tracking error only by the feedback control system
without repetitive controller. Although single-input
and single-output plants are considered for the sake of
simplicity, the results of the paper can be extended to
multivariable systems. Finally, two illustrative
examples are provided to show the validity of the
proposed method.

Throughout this paper, signals in the time domain
are denoted by lower-case letters and their capitals
denote their own Laplace transforms, for example,
Ff(O)=F(s). 1f there is no other definition,

capitals such as G(s) or G stand for transfer

functions. The Laplace variable s and the angular
frequency ® will be omitted when these do not lead
to any confusion.

2. ROBUST STABILITY CONDITION OF
REPETITIVE Control Systems

Consider the feedback control system in Fig. 1. In
this figure, y,(f) is the reference trajectory and is
assumed to be periodic and bounded within the period
T, y(t) is the plant output, and u(r) is the
feedback control input. C(s) is the feedback

controller that stabilizes the feedback control system.
The plant G(s) is described in the following
multiplicative uncertain form:

G(s) = (1+ AW, ()G, (5), M

Fig. 2. Repetitive control system.

where G, (s) is the nominal plant model, W,(s) is

a known stable uncertainty weighting function, and
A(s) is an unknown stable function satisfying
fAll,<1.

The following lemma, which is widely known as
the robust performance condition in the robust control
theory, will be used to derive our results.

Lemma 1 [13]: Consider the feedback control
system in Fig. 1 with the plant G(s) described in (1).
Then a necessary and sufficient condition for robust
performance is

W,S,
W, T, <l and |—r——) <1
1+ AW, T,
which is equivalent to
Iw,s, 1+1w,1,| <1, @

where ,(s) is a known stable performance
weighting function, S,(s)=1/(1+G,(s)C(s)) is the
nominal sensitivity function, and T,(s)=1-S,(s) 1s
the nominal complementary sensitivity function.

In order to effectively track the periodic reference
signal, the repetitive controller C,,(s) is added to
the existing feedback control system as the add-on
module given in Fig. 2.

Theorem 1: Consider the repetitive control system

in Fig. 2. Then the repetitive control system is
robustly stable if the condition

W, (jw)|cos(B(w)~ol) <1, Vo, 3)

where 8(w) =arg[WV,(jo)] and the robust perfor-

mance condition (2) are satisfied.
Proof: Since the repetitive controller is added on to
the existing feedback control system, the sign of the
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Fig. 3. An equivalent system.

repetitive controller should be positive to preserve the
repetitive control system shown in Fig. 2 to be a
negative feedback system. The transfer function of the
repetitive controller is given by

1

C (s)=———.
T A=W

O]
By replacing s with jo to work with frequency
response, the denominator of (4) becomes

1= W, (jw)| cos(8(w) - T)

5
-j W, (jo)|sin(0(®) - oT). (5)

To maintain the sign to be positive, the real part of (5)
should be positive, i.e.,

=W, (jo)|cos(8(w) - oT) >0, Vo,

which leads to (3).
To prove robust stability, we consider the repetitive
control system provided in Fig. 2, but ignoring inputs.

The transfer function from the output of e’
~Ts

around
M(s) =
=W,S,/(1+AW,T,), so the repetitive control system

to the input of e equals to

shown in Fig. 2 can be converted as an equivalent

Ts

system composed of ¢ with M(s) as shown in

Fig. 3. Since the time delay e is stable and its

norm is 1, the maximum loop gain equals
| M(s)e™™ ||, , which is less than 1 if and only if the
small-gain condition [13,14]

W,S,

<1 6
1+AW,T, ©)

0

holds. Hence, it is clear that (6) is a sufficient
condition for robust stability of the repetitive control
system by the small-gain theorem. Finally, according
to Lemma 3, (6) is guaranteed under the robust
performance condition (2). O

According to Theorem 1, the feedback controller
satisfying the robust performance condition can
directly guarantee the robust stability of the repetitive
control system if the performance weighting function
W,(s) is utilized in the repetitive controller.

Therefore, there is no need to design a repetitive
controller ensuring robust stability in comparison with
other methods [2,3,5,7,8].

Remark 1: By replacing a g-filter with a
performance weighting function W,(s), the robust

stability of the repetitive control system is automati-
cally satisfied. In general, the bandwidth of the g-filter
does not have to be wider than the control bandwidth
since the frequencies of references and disturbances
are much lower than the cutoff frequency of the open
loop. The performance weighting function plays a role
to determine the open loop properties of the feedback
system. In Fig. 1, if the robust performance condition
is satisfied, the following condition is also met.

17, (Sl <1, (7N
where S(s) is the sensitivity function and described
as

1 1

8 = e T1Le) ®
Equations (7) and (8) lead to

W, (jo) <1+ L(jw)|, Vo. 9)

A sufficient condition for (9) is written as

W, (jo) <] L{jo)|, Yo.

Therefore, by selecting Wp (s) asa g-filter, the g-

filter has a proper bandwidth considering that of the
open loop L(s) and then the repetitive controller can

track or attenuate references or disturbances in the
control bandwidth effectively.

3. ESTIMATION OF THE STEADY-STATE
TRACKING ERROR

The following theorem indicates that the steady-
state tracking error of the repetitive control system in
Fig. 2 can be obtained irrespective of the time-delay
element if the robust stability condition of the
repetitive control system is satisfied, i.e., the robust
performance condition is ensured in the feedback
control system in Fig. 1.

Theorem 2: Consider the repetitive control system
in Fig. 2. The tracking error e(f) approaches to

e,, = lim &(¢)

f—o0

S (A-W (10)
= lim &} A " (5)
fp00 I+AWuTn "WpSn

as t —oo if the repetitive control system satisfies the
conditions (2), (3) where
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Sn (1 - Wp)
1+ AWYuTn - WpSn

.
8(t):,%“l{ Yr(s)}. (11)

Proof: From Fig. 2, the tracking error is given by
E(s)=Y,(s)-Y(s)
G(s)C(s)

=Y.(s)- 7
1-W,(s)e"*

E(s).

From the above equation, we obtain
E(s)=W,(s)e " E(s)=Y,(s) - W, ()Y, (s)e” ™
~G(s)C(s)E(s).
Using  W,/(1+G,(1+AW,)C) = w,S,/(1+AW,T,),

the tracking error becomes

S, (1-w,e ™
E(s) = nd=W,e™")
1+ AW, T, ~W,S,e
S, (19,¢”T*) (12)
_ 1+AW,T,

= Y. (s).
s
1+AW,T,

—Y.(s)

Since |[W,S,/(1+AW,T)|,<1, the tracking error

can be obtained by expanding the denominator in
terms of a power series as follows:

S, (1-W,e ™ w,s
£ =m0 Dy o S o
1+AW,T,

2
w.S
N pon__ | ;s
1+ AW,T,

S

2 Y,(s)

_ CL+AW)
1+ AW, T,

1+ AW,T,
Je‘“w

WS,
1+AW,T,

_Tptn
1+AW,T,
T(+AW,)
1+AW,T,

2
} e—‘ZTsYr(S) .

= Ey(s)+ i Ey(s)e ¥
k=1

where

S :
1+AW,T,

Ey(s) =
and

w,S,
L+ AW, T,

Ek(s)sz”(1+AW”)(

k
Y.
1+ AT, J )

for all ke N. Since transfer functions -S,, 7,, A,

(13)

W,, and W, — are analytic in the right half-plane and

y.(t) is bounded, there exist inverse Laplace

transforms for each of the terms in (13). The tracking
error in the time domain is

e(r) =ey(t)+ Y e (t—kT), (14)
k=1
where ¢;(1) = o {Eq(s)} 1is the tracking error
generated only by the feedback control system in Fig.
1 and e,(t—AT) = {E ()™} for all keN.
Thus, the steady-state tracking error becomes

e, = lim e(f)
1=»00

= lim {eo(t) + i et~ kT)}
=0

k=1

= lim {eo 0+ iek (z)} (15)
10 k=]

= lim ! {Eo(s) + i Ey (S)}
s k=1

= lim g(¢).
t—o»

Since [|W,S,/(1+AW,T,)|l,<1, the sum of Ey(s)

and the infinite series Y . Ey(s) is S,(1-W,)/
(1+AW,T, -W,S,)Y.(s). Finally, the steady-state

tracking error can be described as (10). O

A few important facts are obtained from Theorem 2.
First, compared with the following steady-state
tracking error derived from (12):

* .
e, = lim e(r)
£-»00

-T:
e | S0
>0 |1+ AW, T, ~W,S,e

R ADI

the steady-state tracking error of (10) has a simple
form without time delay element. Second, let W i (s}

be 1 for all frequencies. Then, the perfect tracking is
achievable from (10) regardless of the periodicity of
y,(t). Third, let W,(s) be an ideal low-pass filter

with DC gain of 1 and cutoff frequency ®,. Then, the

steady-state tracking error approaches to zero even if
v.(t) is composed of signals containing the

frequencies lower than o,.

Remark 2: Not only e, but also e, can be

used to estimate the steady-state error in the repetitive
control system. From the viewpoint of the steady-state



964 Tae-Yong Doh and Jung Rae Ryoo

error, two equations are equivalent, although there are
differences in the description and in the transient

responses of e(f) and &(t). e,

.« are directly

obtained from the tracking error (12) and e are

obtained by using the properties of limit (15).
Corollary 1: Consider the repetitive control system

in Fig. 2. Then, for k€N, | |,—>0 as k>

if the conditions (2) and (3) are satisfied.
Proof: In (13) and (14), it can be found that

WS,

1+AWuTJEk(S) (16)

for keN. In the time domain, by the properties of
the % -norm [14],

[l €41 < TS [l Ml
e < €
k112 T AW,T, | &2
: )
W,S,
< el
1+AW, T\
Therefore, if condition (2) is satisfied, | e |,
approaches to zero as k —» 0. 0
The response corresponding to e, (r —(k+1)T)

is superimposed on ¢(t-T), e(t-2T), -,
e, (t —kT). As explained in [2] and [7], Corollary 1
implies that the responses corresponding to
e (t—kT) for kN tend to decay with the decay

is made to

oc

rate of . Hence, if

00
be smaller, a better steady-state response can be
obtained. However, it is not explained in Corollary 1
that the steady-state tracking error approaches to zero.

pn pn
AW, T, 1+AW,T,

4. BOUNDEDNESS OF THE STEADY-STATE
TRACKING ERROR

In this subsection, we show that from the viewpoint
of the steady-state tracking error, the repetitive control
system is more effective than simple feedback controi
systems. Before advancing a theory, we first show in
the following coroliary that the repetitive control
system satisfying the modified conditions preserves
robust stability.

Corollary 2: Consider the repetitive control system
in Fig. 2. If the condition (3) and

s, 1+ 1w,

< (18)

are satisfied where W; =W,/(=||1-W, |l,) and

W, =W, I(1-|1-W,|l,), the control

system is robustly stable.
Proof: If W, =1, (18) is the same as condition (2)

and the proof is equivalent to the proof of Theorem 1.
Now let us consider the case of W), #1. Condition

(3)leadsto ([1-W), |l,<1 and (18) implies that

repetitive

7S 1+17,T,,|

<A1,

which also implies that condition (2) is satisfied.
Therefore, the considered repetitive control system is
robustly stable. 0

Using the results in Theorems 1 and 2, we show in
the following theorem that the least upper bound of
the steady-state tracking error made by the proposed
repetitive control system is less than or equal to that
generated only by the feedback controtler.

Theorem 3: If the conditions (3) and (18) are
satisfied, the least upper bound of the steady-state
tracking error e, in the repetitive control system in

Fig. 2 is less than or equal to the least upper bound of

the steady-state tracking error egs in the feedback

In other words, if

e |=tim, ., €0 ()]

control system in Fig. 1.
e = llim{,_)OO e(t)‘ <o and
<PB,then a<P.

Before proving Theorem 3, we first introduce a
useful lemma.
Lemma 2 [15]: For real-valued functions f(¢)

and g(6), if f@)>g@ for all ¢>20 and
lim,,,, f(t) and lim,_,,g(t) exist, then

1imt—>oo f(t) Z lirnt—)oo g(t)
Proof of Theorem 3: For the sake of simplicity, let
the transfer function S,/(1+AW,T,) be S,. Then

the transfer function S,(1-W,)/(1+AW,T, -W,S,)
can be rewritten as S,(1-W,)/(1-W,S.) . The

complex Fourier series representation of a periodic
reference trajectory y,{f) with period T is given

by y,(z‘)zZ::_wckejk‘”O’ and ®g =2n/T where
¢, is known as the kth Fourier coefficient. From

(10) and (14), e, and egs are given by

< S {(Jkwg Y1 - W, { jko )
e, = lim (J 0)'( p(.]. 0)) o, ekt
oo, = 1=W, (jkwy)S, (kwg)

b

o)
0 : . ikeot
e = lim Y S,(jkog)c e,
{ >0 .

respectively. Hence, the following inequalities are
obtained:
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leg = i lim e(?)

t—w
clim $ [SeURn)1- W, (jkw))| e
0, | 1=, (jke)S, (ko) |

<d

t]

| egs =

lim eo(t)‘
{—c0
00

< lim >

P k=

Se kg ege™ ™' <,

where o and B are the least upper bounds of e
and egs, respectively. By  showing  that
Se (ko)1 =W, (koo /(1 =W, (jko)S, (jkwg))| is
less than |Se (Jkwyg )[ , we prove that o is less than or
equalto B.

Condition (18) implies that

1=-W,(jo) [<1=[W,(jo)S,(jo)|, Vo. (19)

We have
L=[14 W, (j0)S, (o) ~ W, (j0)S, (o) |
<, (Jo)S (o) [+[1-W, (jo)S.(jo)|, Vo
and therefore
=W, (jo)S, (jo) I - W, (jo)S, (jo) |, Yo. (20)
Finally, from (19) and (20), the following inequality
1=W,(jo) <|1-W,(jo)S.(jo)|, Yo
is obtained, which implies that

S (o)1=, (jo))|
1=, (j)S, (jo) |

<|S, ()|, Yo

The above inequality leads to

S. (Jhog X1 =W, (jkoo))|
1= W, (jkog)S, (jkoy) |

< \Se (].k(")())

, Yk @

By (21) and Lemma 2, it is clear thata <§ . 0

Theorem 2 shows that the steady-state tracking
error will be zero if we design the feedback controller
C(s) satisfying the robust performance condition (6)

under Wo(s)=1. In the meantime, Theorem 3

explains the case that the controller design is not
achievable with W,(s)=1. If we select W,(s)#1
satisfying both (2) and (3) and solve the modified
robust performance condition (18), the repetitive
control system composed of Wy,(s) and the designed

controller C{s) can ensure that the steady-state

tracking error is less than or equal to that only by the
feedback controller.

5. ILLUSTRATIVE EXAMPLES

To show the feasibility of the proposed method, we
present two illustrative examples.

Example 1 (Case I Wp(s)zl ): Consider the

following plant, performance weighting transfer
function, and uncertainty weighting function:

0.95% + 24s +50

G,(s)= ,
§ s% 4255 +400
0.75s +10
Wo(s)=1, W, (s)= "
S =1 W () ==

Using the u -Analysis and Synthesis Toolbox of
Matlab [16], the feedback controller

1.6889(s +100)(s” + 28.54s +237)

C(s)=
(s +86.6)(s + 23.11)(s + 2.763)

can be obtained, which leads to

w WYPSH |+ W, T, I =0.846

oo}

as shown in Fig. 4. Therefore, not only the robust
performance of the feedback control system but also
the robust stability of the proposed repetitive control
system are guaranteed. In simulations, let the
reference trajectory be a periodic trapezoidal signal in
Fig. 5. The repetitive controller is turned on at 2 sec.
Fig. 5 shows the reference trajectory {dash-dot) and
the tracking output (solid), and Fig. 6 shows the
tracking error. After turning on the repetitive
controller, the tracking error is abruptly reduced and

| WpSn])r] W, Tl

10*

107 10

9
Frequency {rad/sec)

W, (jo)S, (o) |+ W, (o)

T,(jw)| versus frequency.

Fig. 4. Example 1:
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Reference Trajectory(dash-dot) and Tracking Output{solid)

T

05k AL

j=

—0BE A N

-1

[ 2 4 [} 8 10
time (sec)

Fig. 5. Example 1: Reference trajectory (dash-dot)
and tracking output (solid).

Tracking Error

time (sec)

Fig. 6. Example 1: Tracking error.

approaches to zero since W, (s)=1.

Example 2 (Case II: W,(s)#1): Consider the

following plant, performance weighting transfer
function, and uncertainty weighting function:

245 +50
Gy (5) = g2t 0

57+ 255+ 400

50 0.755+10
W (s)=—o, W, (s)= 25+ 10
p= e ="

Using the p -Analysis and Synthesis Toolbox of
Matlab [16], the feedback controller

4357(s +100)(s +26.81)(s +9.939)

Cls)=
(s + 4782)(s + 62.8)(s + 50)(s + 1.468)

can be obtained, which leads to

7,8, 14177, || =0.686

00

as shown in Fig. 7. Therefore, both the robust
performance of the feedback control system and the
robust stability of the repetitive control system are
guaranteed. As Example 1, the reference trajectory is
the trapezoidal signal and the repetitive controller is
furned on at 2 sec. Fig. 8 shows the reference
trajectory (dash-dot) and the tracking output (solid),
and Fig. 9 shows the ftracking error. After the
repetitive controller is turned on, the tracking error is
apparently reduced. However, unlike Example 1, the
tracking error cannot approach to zero since
W,(s)#1. It is verified in Fig. 9 that the tracking

error by simulation approaches to the steady-state
tracking error estimated by (10)as 7>,

1

10 10° 10 10
Frequency (rad/sec)

T,(jw)| versus frequency.

Fig. 7. Example 2:

Reference Trajectory(dash-dot) and Tracking Output(solid)

=4

~0.51

-1

time (sec)

Fig. 8. Example 2: Reference trajectory (dash-dot)
and tracking output (solid).

Tracking Error

time (sec)

Fig. 9. Example 2: The tracking error by simulation
(solid) and the steady-state tracking error

6. CONCLUDING REMARKS

In this paper, it was shown that the robust stability
of the repetitive control system is equivalent to the
robust performance of the feedback control system. If
the performance weighting function #,(s) is used

as a filter in the repetitive controller and the feedback
controller C(s) satisfying the robust performance

condition is designed using several tools from robust
control theory, the robust stability of the repetitive
control system is immediately guaranteed. Moreover,
properties of the steady-state tracking error of the
repetitive control system were investigated. The
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steady-state tracking error was described in a simple
form without time-delay element. Then we obtained a
sufficient condition ensuring that the least upper
bound of the steady-state tracking error in the
repetitive control system is less than or equal to the
least upper bound of the steady-state tracking error in
the feedback control system. Finally, simulations were
performed and the results were presented to validate
the effectiveness of the proposed method.
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