• Title/Summary/Keyword: intrinsic pathway

Search Result 144, Processing Time 0.026 seconds

Apoptosis and Cell Cycle Arrest in Two Human Breast Cancer Cell Lines by Dieckol Isolated from Ecklonia cava

  • You, Sun Hyong;Kim, Jeong-Soo;Kim, Yong-Seok
    • Journal of Breast Disease
    • /
    • v.6 no.2
    • /
    • pp.39-45
    • /
    • 2018
  • Purpose: Dieckol, a phlorotannin compound isolated from Ecklonia cava, has been reported to have antioxidant, antiviral, anti-inflammatory, and anticancer properties. The purpose of this study was to investigate its anticancer effects on human breast cancer cell lines. Methods: In this study, the viability of two human breast cancer cell lines SK-BR-3 and MCF-7 was investigated after dieckol treatment using a WST-1 assay. Apoptosis and cell cycle distribution were assayed via Annexin V-fluorescein isothiocyanate and propidium iodide staining followed by flow cytometric analysis. Immunoblotting analysis was also performed using Bax/Bcl-2 to determine whether the dieckol-induced apoptosis was mediated by the intrinsic apoptotic pathway. Results: In a dose dependent manner, dieckol reduced the number of viable cells and increased the number of apoptotic cells. The effect of dieckol on the cell cycle distribution was analyzed using flow cytometry. Dieckol treatment significantly increased the percentage of MCF-7 and SK-BR-3 in the G2/M phase. Immunoblot analysis revealed that 24 hours of dieckol exposure increased the Bax/Bcl-2 ratio. Conclusion: Dieckol induced cytotoxicity in MCF-7 and SK-BR-3 human breast cancer cells inducing apoptosis and cell cycle arrest. Therefore, it is suggested that dieckol may be a potential therapeutic agent for breast cancer.

Cytotoxic Effect of Triglycerides via Apoptotic Caspase Pathway in Immune and Non-immune Cell Lines

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Hyperlipidemia is defined as conditions of the accumulation of lipids such as free fatty acids (FFA), triglyceride (TG), cholesterol and/or phospholipid in the bloodstream. Hyperlipidemia can cause lipid accumulation in non-adipose tissue, which is lipid-cytotoxic effects in many tissues and mediates cell dysfunction, inflammation or programmed cell death (PCD). TG is considered to be a major cause of atherosclerosis through inflammatory necrosis of vascular endothelial cells. Recently, TG have also been shown to exhibit lipid-cytotoxicity and induce PCD. Therefore, we investigated the effect of TG on the cytotoxic effect of various cell types. When exposed to TG, the cell viability of U937 monocytes and Jurkat T lymphocytes, as well as the cell viability of MCF-7, a non-immune cell, decreased in time- and dose-dependent manner. In U937 cells and Jurkat cells, caspase-9, an intrinsic apoptotic caspase, and caspase-8, an extrinsic apoptotic caspase, were increased by exposure to TG. However, in TG-treated MCF-7 cells, caspase-8 activity increased only without caspase-9 activity. In addition, the reduction of cell viability by TG was recovered when all three cell lines were treated with pan-caspase inhibitor. These results suggest that activation of apoptotic caspases by TG causes lipotoxic effect and decreases cell viability.

Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production

  • Ahmed, Aqsa;Ahmad, Abdullah;Li, Renhan;AL-Ansi, Waleed;Fatima, Momal;Mushtaq, Bilal Sajid;Basharat, Samra;Li, Ye;Bai, Zhonghu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1465-1480
    • /
    • 2021
  • Violacein, a purple pigment first isolated from a gram-negative coccobacillus Chromobacterium violaceum, has gained extensive research interest in recent years due to its huge potential in the pharmaceutic area and industry. In this review, we summarize the latest research advances concerning this pigment, which include (1) fundamental studies of its biosynthetic pathway, (2) production of violacein by native producers, apart from C. violaceum, (3) metabolic engineering for improved production in heterologous hosts such as Escherichia coli, Citrobacter freundii, Corynebacterium glutamicum, and Yarrowia lipolytica, (4) biological/pharmaceutical and industrial properties, (5) and applications in synthetic biology. Due to the intrinsic properties of violacein and the intermediates during its biosynthesis, the prospective research has huge potential to move this pigment into real clinical and industrial applications.

Discovery of 14-3-3 zeta as a potential biomarker for cardiac hypertrophy

  • Joyeta Mahmud;Hien Thi My Ong;Eda Ates;Hong Seog Seo;Min-Jung Kang
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.341-346
    • /
    • 2023
  • Acute myocardial infarction (AMI) is a multifaceted syndrome influenced by the functions of various extrinsic and intrinsic pathways and pathological processes, which can be detected in circulation using biomarkers. In this study, we investigated the secretome protein profile of induced-hypertrophy cardiomyocytes to identify next-generation biomarkers for AMI diagnosis and management. Hypertrophy was successfully induced in immortalized human cardiomyocytes (T0445) by 200 nM ET-1 and 1 μM Ang II. The protein profiles of hypertrophied cardiomyocyte secretomes were analyzed by nano-liquid chromatography with tandem mass spectrometry and differentially expressed proteins that have been identified by Ingenuity Pathway Analysis. The levels of 32 proteins increased significantly (>1.4 fold), whereas 17 proteins (<0.5 fold) showed a rapid decrease in expression. Proteomic analysis showed significant upregulation of six 14-3-3 protein isoforms in hypertrophied cardiomyocytes compared to those in control cells. Multi-reaction monitoring results of human plasma samples showed that 14-3-3 protein-zeta levels were significantly elevated in patients with AMI compared to those of healthy controls. These findings elucidated the role of 14-3-3 protein-zeta in cardiac hypertrophy and cardiovascular disorders and demonstrated its potential as a novel biomarker and therapeutic strategy.

Flower Color Modification by Manipulating Flavonoid Biosynthetic Pathway (플라보노이드 대사 조절을 통한 화색 변경)

  • Lim, Sun-Hyung;Kim, Jae-Kwang;Kim, Dong-Hern;Sohn, Seong-Han;Lee, Jong-Yeol;Kim, Young-Mi;Ha, Sun-Hwa
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.511-522
    • /
    • 2011
  • Flower color is one of the main target traits in the flower breeding. Recently, technological advances in genetic engineering have been successfully reported the flower colors, such as blue roses and blue carnations that are impossible to develop by traditional breeding. Accumulated knowledge-based approaches for flavonoid biosynthesis enabled to introduce novel and unique colors into flowers. These flower color modifications have been made through the regulation of flavonoid metabolic pathway - control of endogenous gene expression and introduction of foreign genes to produce novel and specific flavonoids - and the introduction of transcription factors that are known to regulate sets of genes being involving in the flavonoid biosynthetic pathway. More empirical regulation of the flavonoids metabolism requires the understanding for regulatory mechanism of intrinsic flavonoids depending on the flower crops and the very sophisticated control of flavonoid metabolic flow. In this review, we summarized successful examples of flower color modification. It might be useful to deduce the strategy for the creation of exquisite colors in flower plants.

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Induction of Apoptosis by Treatment of Human Prostate Cancer LNCaP Cells with Methanol Fractions from Prunus mume (매실(Prunus mume) 메탄올 분획물의 처리에 따른 인체 전립선암세포 LNCaP의 apoptosis 유도 효과)

  • Kim, Hwi-gon;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 2021
  • This study examined the growth inhibitory effect of the methanol fraction of maesil (Prunus mume) extract (MMF) on LNCaP, PC-3, and RC-58T human prostate cancer cell lines. Among these cell lines, LNCaP was the most sensitive to the inhibitory effects of MMF. Observation of the morphology and apoptotic body formation in the LNCaP cells revealed morphological changes, nuclear damage, and condensation in response to MMF treatment. The suppressive effect of MMF was related to the intrinsic apoptosis pathway, as indicated by increased expression of the pro-apoptotic proteins Bax, capase-3, capase-9, and PARP and decreased expression of the anti-apoptotic protein Bcl-2. Combined treatment with MMF and the AIF inhibitor N-phenylmalemide (N-PM) indicated that MMF treatment alone had a significant growth suppression effect. The involvement of the extrinsic apoptosis pathway was also confirmed by increased expression of AIF and Endo G. The growth suppression effect of MMF was also significant when compared to the effects of a combination of the PI3K inhibitor LY294002 and MMF. The reduced expression of PI3K, p-Akt, and p-mTOR confirmed the involvement of the PI3K/Akt/ mTOR signaling pathway in regulating the anti-proliferative properties of MMF. In conclusion, the growth suppression effect of MMF in the LNCaP human prostate cancer cell line shows the possibility of using this natural product in functional foods.

Sagantang-induced Apoptotic Cell Death is Associated with the Activation of Caspases in AGS Human Gastric Carcinoma Cells (사간탕 처리에 의한 AGS 인체 위암세포의 caspase 활성 의존적 apoptosis 유발)

  • Park, Cheol;Hong, Su Hyun;Choi, Sung Hyun;Lee, Se-Ra;Leem, Sun-Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1384-1392
    • /
    • 2015
  • Sagantang (SGT), a Korean multiherb formula comprising six medicinal herbs, Paeonia lactiflora Pall., Belamcanda chinensis (L.) DC, Gardenia jasminoides Ellis, Poria cocos Wolf, Cimicifuga heracleifolia Komarov, and Artractylodes japonica Koidzumi, was recorded in “Dongeuibogam.” The present study investigated the anticancer potential of SGT in AGS human gastric carcinoma cells. The results indicated that SGT treatment significantly inhibited the growth and viability of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, in addition to chromatin condensation and DNA fragmentation, and the accumulation of annexin-V positive cells. The induction of apoptotic cell death by the SGT treatment was associated with up-regulation of Fas protein expression, truncation of Bid, and down-regulation of the anti-apoptotic Bcl-2 protein. The SGT treatment also effectively induced the loss of mitochondrial membrane potential, which was associated with the activation of caspases (caspase-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase. However, a pan-caspase inhibitor significantly blocked the SGT-induced apoptosis and growth suppression in AGS cells. This study suggests that SGT induces caspase-dependent apoptosis through an extrinsic pathway by upregulating Fas, as well as through an intrinsic pathway by modulating Bcl-2 family members in AGS cells. The results suggest that SGT may be a potential chemotherapeutic agent for the control of human gastric cancer cells. However, further studies will be needed to confirm the potential of SGT in cancer prevention and therapy in an in vivo model and to identify biological active compounds of SGT.

Induction of apoptosis using the mixture of fucoidan and Crepidiastrum denticulatum extract in HepG2 liver cancer cells (후코이단/이고들빼기 혼합물에 의한 HepG2 간암세포의 apoptosis 유도)

  • Se-Eun Park;Dabin Choi;Kyo-nyeo Oh;Hanjoong Kim;Hyungbum Park;Ki-Man Kim
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.276-286
    • /
    • 2024
  • In the present study, we investigated whether a mixture of fucoidan and Crepidiastrum denticulatum extract (FCE) had the potential to improve the therapeutic efficacy of cancer treatment. The results demonstrated that FCE significantly reduced cell viability and induced the release of LDH (lactate dehydrogenase) and DNA fragmentation in HepG2 cells in a dose-dependent manner. In addition, FCE treatment also increased the protein expression level of p53, the release of cytochrome c, and the loss of mitochondrial membrane potential. Moreover, FCE dose-dependently increased protein expression levels of Bax, and cleaved caspase-3 and -9. However, FCE decreased the protein expression level of Bcl-2. These results suggest that FCE inhibits cell proliferation and induces apoptosis via the mitochondrial-mediated intrinsic pathway. The present study demonstrates that FCE can be used as an anti-cancer agent for liver cancer based on apoptosis mechanism.

Ras GTPases and Ras GTPase Activating Proteins (RasGAPs) in Human Disease (Ras GTPase 및 Ras GTPase activating protein과 사람의 질병)

  • Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1100-1117
    • /
    • 2018
  • The Ras superfamily of small G-proteins acts as a molecular switch on the intracellular signaling pathway. Upon ligand stimulation, inactive GTPases (Ras-GDP) are activated (Ras-GTP) using guanine nucleotide exchange factor (GEF) and transmit signals to their downstream effectors. Following signal transmission, active Ras-GTP become inactive Ras-GDP and cease signaling. However, the intrinsic GTPase activity of Ras proteins is weak, requiring Ras GTPase-activating protein (RasGAP) to efficiently convert RAS-GTP to Ras-GDP. Since deregulation of the Ras pathway is found in nearly 30% of all human cancers, it might be useful to clarify the structural and physiological roles of Ras GTPases. Recently, RasGAP has emerged as a new class of tumor-suppressor protein and a potential therapeutic target for cancer. Therefore, it is important to clarify the physiological roles of the individual GAPs in human diseases. The first RasGAP discovered was RASA1, also known as p120 RasGAP. RASA1 is widely expressed, independent of cell type and tissue distribution. Subsequently, neurofibromatosis type 1 (NF1) was discovered. The remaining GAPs are affiliated with the GAP1 and synaptic GAP (SynGAP) families. There are more than 170 Ras GTPases and 14 Ras GAP members in the human genome. This review focused on the current understanding of Ras GTPase and RasGAP in human diseases, including cancers.