Browse > Article

Flower Color Modification by Manipulating Flavonoid Biosynthetic Pathway  

Lim, Sun-Hyung (Functional Biomaterial Division, National Academy of Agricultural Science)
Kim, Jae-Kwang (Biosafety Division, National Academy of Agricultural Science)
Kim, Dong-Hern (Bio-crop Development Division, National Academy of Agricultural Science)
Sohn, Seong-Han (Genomics Division, National Academy of Agricultural Science)
Lee, Jong-Yeol (Functional Biomaterial Division, National Academy of Agricultural Science)
Kim, Young-Mi (Functional Biomaterial Division, National Academy of Agricultural Science)
Ha, Sun-Hwa (Functional Biomaterial Division, National Academy of Agricultural Science)
Publication Information
Horticultural Science & Technology / v.29, no.6, 2011 , pp. 511-522 More about this Journal
Abstract
Flower color is one of the main target traits in the flower breeding. Recently, technological advances in genetic engineering have been successfully reported the flower colors, such as blue roses and blue carnations that are impossible to develop by traditional breeding. Accumulated knowledge-based approaches for flavonoid biosynthesis enabled to introduce novel and unique colors into flowers. These flower color modifications have been made through the regulation of flavonoid metabolic pathway - control of endogenous gene expression and introduction of foreign genes to produce novel and specific flavonoids - and the introduction of transcription factors that are known to regulate sets of genes being involving in the flavonoid biosynthetic pathway. More empirical regulation of the flavonoids metabolism requires the understanding for regulatory mechanism of intrinsic flavonoids depending on the flower crops and the very sophisticated control of flavonoid metabolic flow. In this review, we summarized successful examples of flower color modification. It might be useful to deduce the strategy for the creation of exquisite colors in flower plants.
Keywords
anthocyanin; genetically modified; metabolic engineering; transcription factor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Li, S.J., X.M. Deng, H.Z. Mao, and Y. Hong. 2005. Enhanced anthocyanin synthesis in foliage plant Caladium bicolor. Plant Cell Rep. 23:716-720.   DOI
2 Lim, S.-H., S.H. Ha, J.K. Kim, S.H. Sohn, D.H. Kim, J.S. Kim, Y.M. Kim, and J.R. Lee. 2010. Expression of phenylpropanoid biosynthetic genes in transgenic tobacco plants with maize B-peru Gene. Kor. J. Intl. Agri. 22:72-77.
3 Lin-Wang, K., K. Bolitho, K. Grafton, A. Kortstee, S. Karunairetnam, T.K. McGhie, R.V. Espley, R.P. Hellens, and A.C. Allan. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 10:50.   DOI
4 Mathews, H., S.K. Clendennen, C.G. Caldwell, X.L. Liu, K. Connors, N. Matheis, D.K. Schuster, D.J. Menasco, W. Wagoner, J. Lightner, and D.R. Wagner. 2003. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689-1703.   DOI   ScienceOn
5 Matsui, K., Y. Umemura, and M. Ohme-Takagi. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J. 55:954-967.   DOI   ScienceOn
6 Di Stilio, V.S., C. Martin, A.F. Schulfer, and C.F. Connelly. 2009. An ortholog of MIXTA-like2 controls epidermal cell shape in flowers of Thalictrum. New Phytol. 183:718-728.   DOI   ScienceOn
7 Dubos, C., J. Le Gourrierec, A. Baudry, G. Huep, E. Lanet, I. Debeaujon, J.M. Routaboul, A. Alboresi, B. Weisshaar, and L. Lepiniec. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 55:940-953.   DOI   ScienceOn
8 Espley, R.V., R.P. Hellens, J. Putterill, D.E. Stevenson, S. Kutty-Amma, and A.C. Allan. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 49:414-427.   DOI   ScienceOn
9 Fukusaki, E., K. Kawasaki, S. Kajiyama, C.I. An, K. Suzuki, Y. Tanaka, and A. Kobayashi. 2004. Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J. Biotechnol. 111:229-240.   DOI   ScienceOn
10 Gachon, C.M., M. Langlois-Meurinne, and P. Saindrenan. 2005. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends Plant Sci. 10:542-549.   DOI   ScienceOn
11 Grotewold, E. 2005. Plant metabolic diversity: A regulatory perspective. Trends Plant Sci. 10:57-62.   DOI   ScienceOn
12 Grotewold, E. 2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57:761-780.   DOI   ScienceOn
13 Han, Y.J., Y.M. Kim, J.Y. Lee, S.J. Kim, K.C. Cho, T. Chandrasekhar, P.S. Song, Y.M. Woo, and J.I. Kim. 2009. Production of purple-colored creeping bentgrass using maize transcription factor genes Pl and Lc through Agrobacteriummediated transformation. Plant Cell Rep. 28:397-406.   DOI   ScienceOn
14 Hanumappa, M., G. Choi, S. Ryu, and G. Choi. 2007. Modulation of flower colour by rationally designed dominant-negative chalcone synthase. J. Exp. Bot. 58:2471-2478.   DOI   ScienceOn
15 Hiratsu, K., K. Matsui, T. Koyama, and M. Ohme-Takagi. 2003. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34:733-739.   DOI   ScienceOn
16 Aida, R., K. Yoshida, T. Kondo, S. Kishimoto, and M. Sibata. 2000. Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-redutase gene. Plant Sci. 160:49-56.   DOI   ScienceOn
17 Aida, R., K. Ohira, Y. Tanaka, K. Yoshida, S. Kishimoto, M. Shibata, and A. Ohmiya. 2004. Efficient transgene expression in chrysanthemum, Dendranthema grandiflorum (Ramat.) Kitamura, by using the promoter of a gene for chrysanthemum chlorophyll-a/b-binding protein. Breeding Sci. 54:51-58.   DOI   ScienceOn
18 Annadana, S., M.J. Beekwilder, G. Kuipers, P.B. Visser, N. Outchkourov, A. Pereira, M. Udayakumar, J. De Jong, and M.A. Jongsma. 2002. Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema grandiflora. Transgenic Res. 11:437-445.   DOI   ScienceOn
19 Boase, M.R., D.H. Lewis, K.M. Davies, G.B. Marshall, D. Patel, K.E. Schwinn, and S.C. Deroles. 2010. Isolation and antisense suppression of flavonoid 3′,5′-hydroxylase modifies flower pigments and colour in cyclamen. BMC Plant Biol. 10:107.   DOI
20 Baumann, K., M. Perez-Rodriguez, D. Bradley, J. Venail, P. Bailey, H. Jin, R. Koes, K. Roberts, and C. Martin. 2007. Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134:1691-1701.   DOI   ScienceOn
21 Butelli, E., L. Titta, M. Giorgio, H.-P. Mock, A. Matros, S. Peterek, E.G.W.M. Schijlen, R.D. Hall, A.G. Bovy, J. Luo, and C. Martin. 2008. Enrichment of tomato fruit with healthpromoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26:1301-1308.   DOI   ScienceOn
22 Chandler, S. and Y. Tanaka. 2007. Genetic modification in floriculture. Crit. Rev. Plant Sci. 26:169-197.   DOI   ScienceOn
23 D'Auria, J.C. 2006. Acyltransferases in plants: A good time to be BAHD. Curr. Opin. Plant Biol. 9:331-340.   DOI   ScienceOn
24 Davies, K.M. 2009. Modifying anthocyanin production in flowers. p. 49-83. In: K. Gould, K. Davies, and C. Winefield (eds.). Anthocyanins biosynthesis functions, and applications. Springer, NY.
25 Yoshida, K., M. Mori, and T. Kondo. 2009. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat. Prod. Rep. 26:884-915.   DOI   ScienceOn
26 van der Krol, A.R., P.E. Lenting, J. Veenstra, I.M. van der Meer, R.E. Koes, A.G.M. Gerats, J.N.M. Mol, and A.R. Stuitje. 1988. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866-869.   DOI
27 Verweij, W., C. Spelt, G.P. Di Sansebastiano, J. Vermeer, L. Reale, F. Ferranti, R. Koes, and F. Quattrocchio. 2008. An $H^{+}$ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat. Cell Biol. 10:1456-1462.   DOI   ScienceOn
28 Winefield, C., H. David, E. Swinny, H. Zhang, H. Arathoon, T. Fischer, H. Halbwirth, K. Stich, C. Gosch, G. Forkmann, and K. Davies. 2005. Investigation of the biosynthesis of 3-deoxyanthocyanins in Sinningia cardinalis. Physiologia Plantarum 124:419-430.   DOI   ScienceOn
29 Yamagishi, M., Y. Shimoyamada, T. Nakatsuka, and K. Masuda. 2010. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol. 51:463-474.   DOI   ScienceOn
30 Yamasaki, M., M. Oda, N. Koizumi, K. Mitsukuri, M. Johkan, T. Nakatsuka, M. Nishihara, and K. Mishiba. 2011. De novo DNA methylation of the 35S enhancer revealed by highresolution methylation analysis of an entire T-DNA segment in transgenic gentian. Plant Biotechnol. 28:223-230.   DOI   ScienceOn
31 Quattrocchio, F., J. Wing, K. van der Woude, E. Souer, N. de Vetten, J. Mol, and R. Koes. 1999. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433-1444.
32 Schwinn, K., J. Venail, Y. Shang, S. Mackay, V. Alm, E. Butelli, R. Oyama, P. Bailey, K. Davies, and C. Martin. 2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831-851.   DOI   ScienceOn
33 Seitz, C., M. Vitten, P. Steinbach, S. Hartl, J. Hirsche, W. Rathje, D. Treutter, and G. Forkmann. 2007. Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochemistry 68:824-833.   DOI   ScienceOn
34 Ueyama, Y., K. Suzuki, M. Fukuchi-Mizutani, Y. Fukui, K. Miyazaki, H. Ohkawa, T. Kusumi, and Y. Tanaka. 2002. Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci. 163:253-263.   DOI   ScienceOn
35 Shimada, N., T. Nakatsuka, M. Nishihara, S. Yamamura, S. Ayabe, and T. Aoki. 2006. Isolation and characterization of a cDNA encoding polyketide reductase in Lotus japonicus. Plant Biotechnol. 23:509-513.   DOI   ScienceOn
36 Tanaka, Y., F. Brugliera, and S. Chandler. 2009. Recent progress of flower colour modification by biotechnology. Int. J. Mol. Sci. 10:5350-5369.   DOI
37 Tanaka, Y., Y. Katsumoto, F. Brugliera, and J. Mason. 2005. Genetic engineering in floriculture. Plant Cell Tiss. Org. Cult. 80:1-24.   DOI   ScienceOn
38 Ueyama, Y., Y. Katsumoto, Y. Fukui, M. Fukuchi-Mizutani, H. Ohkawa, T. Kusumi, T. Iwashita, and Y. Tanaka. 2006. Molecular characterization of the flavonoid biosynthetic pathway and flower color modification of Nierembergia sp. Plant Biotechnol. 23:19-24.   DOI   ScienceOn
39 Umehara, M., A. Hanada, S. Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H. Magome, Y. Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka, and S. Yamaguchi. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195-200.   DOI   ScienceOn
40 Nakatsuka, T., Y. Abe, Y. Kakizaki, S. Yamamura, and M. Nishihara. 2007b. Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep. 26:1951-1959.   DOI   ScienceOn
41 Nakayama, T., K. Yonekura-Sakakibara, T. Sato, S. Kikuchi, Y. Fukui, M. Fukuchi-Mizutani, T. Ueda, M. Nakao, Y. Tanaka, T. Kusumi, and T. Nishino. 2000. Aureusidin synthase: A polyphenol oxidase homolog responsible for flower coloration. Science 290:1163-1166.   DOI   ScienceOn
42 Nielsen, K., S.C. Deroles, K.R. Markham, J.M. Bradley, E. Podivinsky, and D. Manson. 2002. Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Mol. Breed. 9:217-229.   DOI   ScienceOn
43 Ono, E., M. Fukuchi-Mizutani, N. Nakamura, Y. Fukui, K. Yonekura-Sakakibara, M. Yamaguchi, T. Nakayama, T. Tanaka, T. Kusumi, and Y. Tanaka. 2006. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Nat. Acad. Sci. USA 103:11075-11080.   DOI   ScienceOn
44 Nishihara, M. and T. Nakatsuka. 2010. Genetic engineering of novel flower colors in floricultural plants: Recent advances via transgenic approaches. Methods Mol. Biol. 589:325-347.
45 Nishihara, M., T. Nakatsuka, and S. Yamamura. 2005. Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett. 579:6074-6078.   DOI   ScienceOn
46 Nishihara, M., T. Nakatsuka, K. Hosokawa, T. Yokoi, Y. Abe, K. Mishiba, and S. Yamamura. 2006. Dominant inheritance of white-flowered and herbicide-resistant traits in trangenic gentian plants. Plant Biotechnol. 23:25-31.   DOI   ScienceOn
47 Pattanaik, S., Q. Kong, D. Zaitlin, J.R. Werkman, C.H. Xie, B. Patra, and L. Yuan. 2010. Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061-1076.   DOI   ScienceOn
48 Quattrocchio, F., A. Baudry, L. Lepiniec, and E. Grotewold. 2006. The regulation of flavonoid biosynthesis. p. 97-122. In: E. Grotewold (ed.). The science of flavonoids. Springer, NY.
49 Nakamura, N., M. Fukuchi-Mizutani, Y. Fukui, K. Ishiguro, K. Suzuki, H. Suzuki, K. Okazaki, D. Shibata, and Y. Tanaka. 2010. Generation of pink flower varieties from blue Torenia hybrida by redirecting the flavonoid biosynthetic pathway from delphinidin to pelargonidin. Plant Biotechnol. 27:375-383.   DOI   ScienceOn
50 Nakatsuka, T. and M. Nishihara. 2010. UDP-glucose:3-deoxyanthocyanidin 5-O-glucosyltransferase from Sinningia cardinalis. Planta 232:383-392.   DOI   ScienceOn
51 Nakatsuka, T., C. Pitaksutheepong, S. Yamamura, and M. Nishihara. 2007a. Induction of differential flower pigmentation patterns by RNAi using promoters with distinct tissue-specific activity. Plant Biotech. Rep. 1:251-257.   DOI   ScienceOn
52 Nakatsuka, T., K.S. Haruta, C. Pitaksutheepong, Y. Abe, Y. Kakizaki, K. Yamamoto, N. Shimada, S. Yamamura, and M. Nishihara. 2008c. Identification and characterization of R2R3- MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant Cell Physiol. 49:1818-1829.   DOI   ScienceOn
53 Nakatsuka, T., K. Mishiba, A. Kubota, Y. Abe, S. Yamamura, N. Nakamura, Y. Tanaka, and M. Nishihara. 2010. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J. Plant Physiol. 167:231-237.   DOI   ScienceOn
54 Nakatsuka, T., K. Mishiba, Y. Abe, A. Kubota, Y. Kakizaki, S. Yamamura, and M. Nishihara. 2008a. Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnol. 25:61-68.   DOI   ScienceOn
55 Nakatsuka, T., K. Sato, H. Takahashi, S. Yamamura, M. Nishihara. 2008b. Cloning and characterization of the UDP-glucose: anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian. J. Exp. Bot. 59:1241-1252.   DOI   ScienceOn
56 Nakatsuka, T., M. Nishihara, K. Mishiba, and S. Yamamura. 2006. Heterologous expression of two gentian cytochrome P450 genes can modulate the intensity of flower pigmentation in transgenic tobacco plants. Mol. Breeding 17:91-99.   DOI   ScienceOn
57 Meyer, P., I. Heidmann, G. Forkmann, and H. Saedler. 1987. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677-678.   DOI   ScienceOn
58 Milkowski, C. and D. Strack. 2004. Serine carboxypeptidase-like acyltransferases. Phytochemistry 65:517-524.   DOI   ScienceOn
59 Mitsuda N., Y. Takiguchi, M. Shikata, K. Sage-Ono, M. Ono, K. Sasaki, H. Yamaguchi, T. Narumi, Y. Tanaka, T. Terakawa, K. Gion, R. Suzuri, Y. Tanaka, T. Nakatsuka, S. Kimura, M. Nishihara, T. Sakai, R. Endo-Onodera, K. Saitoh, K. Isuzugawa, Y. Oshima, T. Koyama, M. Ikeda, M. Narukawa, K. Matsui, M. Nakata, N. Ohtsubo, and M. Ohme-Takagi. 2011. The new FioreDB database provides comprehensive information on plant transcription factors and phenotypes induced by CRES-T in ornamental and model plants. Plant Biotechnol. 28:123-130.   DOI   ScienceOn
60 Mitsuda, N., Y. Umemura, M. Ikeda, M. Shikata, T. Koyama, K. Matsui, T. Narumi, R. Aida, K. Sasaki, T. Hiyama, Y. Higuchi, M. Ono, K. Isuzugawa, K. Saitoh, R. Endo, K. Ikeda, T. Nakatsuka, M. Nishihara, S. Yamamura, T. Yamamura, T. Terakawa, N. Ohtsubo, and M. Ohme-Takagi. 2008. FioreDB: A database of phenotypic information induced by the chimeric repressor silencing technology (CRES-T) in Arabidopsis and floricultural plants. Plant Biotechnol. 25:37-44.   DOI   ScienceOn
61 Momonoi, K., K. Yoshida, S. Mano, H. Takahashi, C. Nakamori, K. Shoji, A. Nitta, and M. Nishimura. 2009. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant J. 59:437-447.   DOI   ScienceOn
62 Morita, Y., M. Saitoh, A. Hoshino, E. Nitasaka, and S. Iida. 2006. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol. 47:457-470.   DOI   ScienceOn
63 Nakamura, N., M. Fukuchi-Mizutani, K. Miyazaki, K. Suzuki, and Y. Tanaka. 2006. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol. 23:13-18.   DOI   ScienceOn
64 Jeong, S.W., P. Kumar, S.C. Jeoung , J.Y. Song, H.Y. Lee, Y.K. Kim, W.J. Kim, Y.I. Park, S.D. Yoo, S.B. Choi, G. Choi, and Y.I. Park. 2010. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol. 154:1514-1531.   DOI   ScienceOn
65 Katsumoto, Y., M. Fukuchi-Mizutani, Y. Fukui, F. Brugliera, T.A. Holton, M. Karan, N. Nakamura, K. Yonekura-Sakakibara, J. Togami, A. Pigeaire, G.Q. Tao, N.S. Nehra, C.Y. Lu, B.K. Dyson, S. Tsuda, T. Ashikari, T. Kusumi, J.G. Mason, and Y. Tanaka. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48:1589-1600.   DOI   ScienceOn
66 Koes, R., W. Verweij, and F. Quattrocchio. 2005. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236-242.   DOI   ScienceOn