DOI QR코드

DOI QR Code

Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production

  • Ahmed, Aqsa (School of Biotechnology, Jiangnan University) ;
  • Ahmad, Abdullah (Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology) ;
  • Li, Renhan (School of Biotechnology, Jiangnan University) ;
  • AL-Ansi, Waleed (School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Fatima, Momal (Department of Industrial Biotechnology, National Institute of Biotechnology and Genetic Engineering (NIBGE)) ;
  • Mushtaq, Bilal Sajid (School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University) ;
  • Basharat, Samra (School of Biotechnology, Jiangnan University) ;
  • Li, Ye (School of Biotechnology, Jiangnan University) ;
  • Bai, Zhonghu (School of Biotechnology, Jiangnan University)
  • Received : 2021.07.27
  • Accepted : 2021.09.26
  • Published : 2021.11.28

Abstract

Violacein, a purple pigment first isolated from a gram-negative coccobacillus Chromobacterium violaceum, has gained extensive research interest in recent years due to its huge potential in the pharmaceutic area and industry. In this review, we summarize the latest research advances concerning this pigment, which include (1) fundamental studies of its biosynthetic pathway, (2) production of violacein by native producers, apart from C. violaceum, (3) metabolic engineering for improved production in heterologous hosts such as Escherichia coli, Citrobacter freundii, Corynebacterium glutamicum, and Yarrowia lipolytica, (4) biological/pharmaceutical and industrial properties, (5) and applications in synthetic biology. Due to the intrinsic properties of violacein and the intermediates during its biosynthesis, the prospective research has huge potential to move this pigment into real clinical and industrial applications.

Keywords

Acknowledgement

This work is support by the Jiangnan University Foundation Young Investigator Award (Grant JUSRP12057 to Y. L.) and The National Science Foundation of China (Grant 21878124 to Z. B.).

References

  1. Gomez-Gomez B, Arregui L, Serrano S, Santos A, Perez-Corona T, Madrid Y. 2019. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: Violacein production and bacterial biofilm formation. Metallomics 11: 1104-1114. https://doi.org/10.1039/c9mt00044e
  2. Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S. 2007. Violacein and biofilm production in Janthinobacterium lividum. J. Appl. Microbiol. 102: 992-999. https://doi.org/10.1111/j.1365-2672.2006.03155.x
  3. Hoshino T. 2011. Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: Biosynthetic mechanism and pathway for construction of violacein core. Appl. Microbiol. Biotechnol. 91: 1463-1475. https://doi.org/10.1007/s00253-011-3468-z
  4. Duran M, Ponezi AN, Faljoni-Alario A, Teixeira MFS, Justo GZ, Duran N. 2012. Potential applications of violacein: A microbial pigment. Med. Chem. Res. 21: 1524-1532. https://doi.org/10.1007/s00044-011-9654-9
  5. Kuzyk SB, Pritchard AO, Plouffe J, Sorensen JL, Yurkov V. 2020. Psychrotrophic violacein-producing bacteria isolated from Lake Winnipeg, Canada. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2020.04.008.
  6. Lamendella R, Jude BA. 2018. Draft genome sequences of violacein-producing Duganella sp. Isolates from a Waterway in Eastern Pennsylvania. Microbiol. Resour. Announc. 7. https://doi.org/10.1128/mra.01196-18.
  7. Hakvag S, Fjaervik E, Klinkenberg G, Borgos SE, Josefsen K, Ellingsen T, et al. 2009. Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trondelag, Norway. Mar. Drugs 7: 576-588. https://doi.org/10.3390/md7040576
  8. Myeong NR, Seong HJ, Kim HJ, Sul WJ. 2016. Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1. J. Biotechnol. 223: 36-37. https://doi.org/10.1016/j.jbiotec.2016.02.027
  9. Aye AM, Bonnin-Jusserand M, Brian-Jaisson F, Ortalo-Magne A, Culioli G, Nevry RK, et al. 2015. Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiol. (United Kingdom) 161: 2039-2052. https://doi.org/10.1099/mic.0.000147
  10. Atalah J, Blamey L, Munoz-Ibacache S, Gutierrez F, Urzua M, Encinas MV, et al. 2020. Isolation and characterization of violacein from an AntarcticIodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 24: 43-52. https://doi.org/10.1007/s00792-019-01111-w
  11. Bromberg N, Dreyfuss JL, Regatieri C V., Palladino M V., Duran N, Nader HB, et al. 2010. Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chem. Biol. Interact. 186: 43-52. https://doi.org/10.1016/j.cbi.2010.04.016
  12. Subramaniam S, Ravi V, Sivasubramanian A. 2014. Pharmaceutical biology synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms. John M Pezzuto Pharm. Biol. 52: 86-90. https://doi.org/10.3109/13880209.2013.815634
  13. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA. 2018. Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ. Sci. Pollut. Res. 25: 5164-5180. https://doi.org/10.1007/s11356-017-8855-2
  14. Choi SY, Lim S, Yoon K hye, Lee JI, Mitchell RJ. 2021. Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J. Biol. Eng. 15: 1-16. https://doi.org/10.1186/s13036-020-00252-3
  15. Jiang PX, Wang HS, Zhang C, Lou K, Xing XH. 2010. Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl. Microbiol. Biotechnol. 86: 1077-1088. https://doi.org/10.1007/s00253-009-2375-z
  16. Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, et al. 2016. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumor. Biol. 37: 3705-3717. https://doi.org/10.1007/s13277-015-4207-3
  17. Alshatwi AA, Subash-Babu P, Antonisamy P. 2015. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Exp. Toxicol. Pathol. 68: 89-97. https://doi.org/10.1016/j.etp.2015.10.002
  18. Duran N, Justo GZ, Duran M, Brocchi M, Cordi L, Tasic L, et al. 2016. Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review. Biotechnol. Adv. 34: 1030-1045. https://doi.org/10.1016/j.biotechadv.2016.06.003
  19. Wang H, Jiang P, Lu Y, Ruan Z, Jiang R, Xing XH, et al. 2009. Optimization of culture conditions for violacein production by a new strain of Duganella sp. B2. Biochem. Eng. J. 44: 119-24. https://doi.org/10.1016/j.bej.2008.11.008
  20. Yang C, Jiang P, Xiao S, Zhang C, Lou K, Xing XH. 2011. Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol. Biochem. Eng. J. 57: 55-62. https://doi.org/10.1016/j.bej.2011.08.008
  21. Fang MY, Zhang C, Yang S, Cui JY, Jiang PX, Lou K, et al. 2015. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb. Cell Fact. 14: 1-13. https://doi.org/10.1186/s12934-014-0183-3
  22. Sun H, Zhao D, Xiong B, Zhang C, Bi C. 2016. Engineering Corynebacterium glutamicum for violacein hyper production. Microb. Cell Fact. 15: 1-9. https://doi.org/10.1186/s12934-015-0402-6
  23. Wong L, Engel J, Jin E, Holdridge B, Xu P. 2017. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab. Eng. Commun. 5: 68-77. https://doi.org/10.1016/j.meteno.2017.09.001
  24. Gu Y, Zhu Y, Ding X, Xu P. 2020. Engineering Yarrowia lipolytica as a Chassis for De Novo synthesis of five aromatic-derived natural products and chemicals. ACS Synth. Biol. 9: 2096-2106. https://doi.org/10.1021/acssynbio.0c00185
  25. Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE. 2013. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 41: 10668-10678. https://doi.org/10.1093/nar/gkt809
  26. DeLoache WC, Russ ZN, Dueber JE. 2016. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun. 7: 11152. https://doi.org/10.1038/ncomms11152
  27. Hui CY, Guo Y, Liu L, Zhang NX, Gao CX, Yang XQ, et al. 2020. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC Adv. 10: 28106-28113. https://doi.org/10.1039/d0ra04815a
  28. Park HA, Park SA, Yang YH, Choi KY. 2021. Microbial synthesis of violacein pigment and its potential applications. Crit. Rev. Biotechnol. 41: 879-901. https://doi.org/10.1080/07388551.2021.1892579
  29. Balibar CJ, Walsh CT. 2006. In vitro biosynthesis of violacein from L-tryptophan by the enzymes VioA-E from Chromobacterium violaceum. Biochemistry 45: 15444-15457. https://doi.org/10.1021/bi061998z
  30. Sanchez C, Brana AF, Mendez C, Salas JA. 2006. Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. ChemBioChem. 7: 1231-1240. https://doi.org/10.1002/cbic.200600029
  31. Ryan KS, Balibar CJ, Turo KE, Walsh CT, Drennan CL. 2008. The violacein biosynthetic enzyme VioE shares a fold with lipoprotein transporter proteins. J. Biol. Chem. 283: 6467-6475. https://doi.org/10.1074/jbc.M708573200
  32. Fuller JJ, Ropke R, Krausze J, Rennhack KE, Daniel NP, Blankenfeldt W, et al. 2016. Biosynthesis of violacein, structure and function of L-tryptophan oxidase VioA from Chromobacterium violaceum. J. Biol. Chem. 291: 20068-20084. https://doi.org/10.1074/jbc.M116.741561
  33. Lai H-E, Obled AMC, Chee SM, Morgan RM, Lynch R, Sharma S V, et al. 2016. A GenoChemetic strategy for derivatization of the violacein natural product scaffold. BioRxiv 2021: 202523.
  34. Yamaguchi H, Tatsumi M, Takahashi K, Tagami U, Sugiki M, Kashiwagi T, et al. 2018. Protein engineering for improving the thermostability of tryptophan oxidase and insights from structural analysis. J. Biochem. 164: 359-367. https://doi.org/10.1093/jb/mvy065
  35. Ericsson Unnerstad H, Lindberg A, Persson Waller K, Ekman T, Artursson K, Nilsson-Ost M, et al. 2009. Microbial aetiology of acute clinical mastitis and agent-specific risk factors. Vet. Microbiol. 137: 90-97. https://doi.org/10.1016/j.vetmic.2008.12.005
  36. Cazoto LL, Martins D, Ribeiro MG, Duran N, Nakazato G. 2011. Antibacterial activity of violacein against Staphylococcus aureus isolated from Bovine Mastitis. J. Antibiot. (Tokyo) 64: 395-397. https://doi.org/10.1038/ja.2011.13
  37. Subramaniam S, Ravi V, Sivasubramanian A. 2014. Synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms. Pharm. Biol. 52: 86-90. https://doi.org/10.3109/13880209.2013.815634
  38. Martins D, Costa FTM, Brocchi M, Duran N. 2011. Evaluation of the antibacterial activity of poly-(d,l-lactide-co-glycolide) nanoparticles containing violacein. J. Nanoparticle Res. 13: 355-363. https://doi.org/10.1007/s11051-010-0037-9
  39. Arif S, Batool A, Khalid N, Ahmed I, Janjua HA. 2017. Comparative analysis of stability and biological activities of violacein and starch capped silver nanoparticles. RSC Adv. 7: 4468-4478. https://doi.org/10.1039/C6RA25806A
  40. Gao A, Chen H, Hou A, Xie K. 2019. Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles. Mater. Sci. Eng. C 103: 109821. https://doi.org/10.1016/j.msec.2019.109821
  41. Wang H, Wang F, Zhu X, Yan Y, Yu X, Jiang P, et al. 2012. Biosynthesis and characterization of violacein, deoxyviolacein and oxyviolacein in heterologous host, and their antimicrobial activities. Biochem. Eng. J. 67: 148-155. https://doi.org/10.1016/j.bej.2012.06.005
  42. Geraldine Asencio, Paris Lavin, Karen Alegria, Mariana Dominguez, Helia Bello, Gerardo Gonzalez-Rocha, et al. 2014. Antibacterial activity of the Antarctic bacterium Janthinobacterium sp: SMN 33.6 against multi-resistant Gram-negative bacteria. Electron. J. Biotechnol. 17: 1-5. https://doi.org/10.1016/j.ejbt.2013.12.001
  43. Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ. 2015. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci. Rep. 5: 21.
  44. Pauer H, Hardoim CCP, Teixeira FL, Miranda KR, Barbirato D da S, Carvalho DP de, et al. 2018. Impact of violacein from Chromobacterium violaceum on the mammalian gut microbiome. PLoS One 13: e0203748. https://doi.org/10.1371/journal.pone.0203748
  45. Choi SY, Lim S, Cho G, Kwon J, Mun W, Im H, et al. 2020. Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles. Environ. Microbiol. 22: 705-713. https://doi.org/10.1111/1462-2920.14888
  46. Sasidharan A, Sasidharan NK, Amma DBNS, Vasu RK, Nataraja AV, Bhaskaran K. 2015. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522). J. Microbiol. 53: 694-701. https://doi.org/10.1007/s12275-015-5173-6
  47. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, et al. 2018. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75: 1049-1062. https://doi.org/10.1007/s00248-017-1095-7
  48. Lee YR, Mitchell RJ, Whang KS. 2016. Isolation and characterization of antifungal violacein producing bacterium Collimonas sp. DEC-B5. Korean J. Microbiol. 52: 212-219. https://doi.org/10.7845/KJM.2016.6031
  49. Andrighetti-Frohner CR, Antonio R V, Creczynski-Pasa TB, Barardi CRM, Simoes CMO. 2003. Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem. Inst. Oswaldo Cruz 98: 843-848. https://doi.org/10.1590/S0074-02762003000600023
  50. Lopes SCP, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FLS, Goelnitz U, et al. 2009. Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicrob. Agents Chemother. 53: 2149-2152. https://doi.org/10.1128/AAC.00693-08
  51. Rahul S, Chandrashekhar P, Hemant B, Bipinchandra S, Mouray E, Grellier P, et al. 2015. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol. Int. 64: 353-356. https://doi.org/10.1016/j.parint.2015.05.004
  52. Leon LL, Miranda CC, De Souza AO, Duran N. 2001. Antileishmanial activity of the violacein extracted from Chromobacterium violaceum [4]. J. Antimicrob. Chemother. 48: 449-450. https://doi.org/10.1093/jac/48.3.449
  53. Ballestriero F, Daim M, Penesyan A, Nappi J, Schleheck D, Bazzicalupo P, et al. 2014. Antinematode activity of violacein and the role of the insulin/IGF-1 pathway in controlling violacein sensitivity in Caenorhabditis elegans. PLoS One 9: e109201. https://doi.org/10.1371/journal.pone.0109201
  54. Lee YJ, Bashyal P, Pandey RP, Sohng JK. 2019. Enzymatic and microbial biosynthesis of novel violacein glycosides with enhanced water solubility and improved anti-nematode activity. Biotechnol. Bioprocess Eng. 24: 366-374. https://doi.org/10.1007/s12257-018-0466-3
  55. Antonisamy P, Ignacimuthu S. 2010. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine 17: 300-304. https://doi.org/10.1016/j.phymed.2009.05.018
  56. Antonisamy P, Kannan P, Aravinthan A, Duraipandiyan V, Valan Arasu M, Ignacimuthu S, et al. 2014. Gastroprotective activity of violacein isolated from Chromobacterium violaceum on indomethacin-induced gastric lesions in rats: investigation of potential mechanisms of action. ScientificWorldJournal 2014: 616432.
  57. Verinaud L, Lopes SCP, Prado ICN, Zanucoli F, Costa TA da, Gangi R Di, et al. 2015. Violacein treatment modulates acute and chronic inflammation through the suppression of cytokine production and induction of regulatory T cells. PLoS One 2015: e0125409.
  58. Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Duran N, Peppelenbosch MP. 2004. Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104: 1459-1464.
  59. Venegas FA, Kollisch G, Mark K, Diederich WE, Kaufmann A, Bauer S, et al. 2019. The bacterial product violacein exerts an immunostimulatory effect via TLR8. Sci. Rep. 9: 13661. https://doi.org/10.1038/s41598-019-50038-x
  60. Duran N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D. 2007. Violacein: properties and biological activities. Biotechnol.Appl. Biochem. 48: 127. https://doi.org/10.1042/BA20070115
  61. Saraiva VS, Marshall JC, Cools-Lartigue J, Burnier MN. 2004. Cytotoxic effects of violacein in human uveal melanoma cell lines. Melanoma Res. 14: 421-424. https://doi.org/10.1097/00008390-200410000-00014
  62. Hosokawa K, Soliev AB, Kajihara A, Enomoto K. 2016. Effects of a microbial pigment violacein on the activities of protein kinases. Cogent Biol. 2: 1259863. https://doi.org/10.1080/23312025.2016.1259863
  63. Hashimi SM, Xu T, Wei MQ. 2015. Violacein anticancer activity is enhanced under hypoxia. Oncol. Rep 33: 1731-1736. https://doi.org/10.3892/or.2015.3781
  64. Platt D, Amara S, Mehta T, Vercuyssee K, Myles EL, Johnson T, et al. 2014. Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem. Biophys. Res. Commun. 455: 107-112. https://doi.org/10.1016/j.bbrc.2014.10.124
  65. Leal AMDS, De Queiroz JDF, De Medeiros SRB, Lima TKDS, Agnez-Lima LF. 2015. Violacein induces cell death by triggering mitochondrial membrane hyperpolarization in vitro Signaling and cellular microbiology. BMC Microbiol. 15: 115. https://doi.org/10.1186/s12866-015-0452-2
  66. Alem D, Marizcurrena JJ, Saravia V, Davyt D, Martinez-Lopez W, Castro-Sowinski S. 2020. Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J. Microbiol. Biotechnol. 36: 1-11. https://doi.org/10.1007/s11274-019-2775-x
  67. Berti IR, Rodenak-Kladniew B, Perez AA, Santiago L, Duran N, Castro GR. 2019. Development of biocarrier for violacein controlled release in the treatment of cancer. React. Funct. Polym. 136: 122-130. https://doi.org/10.1016/j.reactfunctpolym.2019.01.001
  68. Pandey AK, Verma S. 2020. Combination drug therapy for multimodal treatment of cancer by targeting mitochondrial transcriptional pathway: an in-silico approach. Med. Hypotheses 143: 110075. https://doi.org/10.1016/j.mehy.2020.110075
  69. Pang L, Antonisamy P, Esmail GA, Alzeer AF, Al-Dhabi NA, Arasu MV, et al. 2020. Nephroprotective effect of pigmented violacein isolated from Chromobacterium violaceum in wistar rats. Saudi J. Biol. Sci. 27: 3307-3312. https://doi.org/10.1016/j.sjbs.2020.10.004
  70. Antonisamy P, Kannan P, Ignacimuthu S. 2009. Anti-diarrhoeal and ulcer-protective effects of violacein isolated from Chromobacterium violaceum in Wistar rats. Fundam Clin. Pharmacol. 23: 483-490. https://doi.org/10.1111/j.1472-8206.2009.00701.x
  71. Aruldass CA, Rubiyatno, Venil CK, Ahmad WA. 2015. Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Adv. 5: 51524-51536. https://doi.org/10.1039/C5RA05765E
  72. Yang D, Park SY, Lee SY. 2021. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv. Sci. 8: 2100743. https://doi.org/10.1002/advs.202100743
  73. Venil CK, Aruldass CA, Abd Halim MH, Khasim AR, Zakaria ZA, Ahmad WA. 2015. Spray drying of violet pigment from Chromobacterium violaceum UTM 5 and its application in food model systems. Int. Biodeterior. Biodegradtion 102: 324-329. https://doi.org/10.1016/j.ibiod.2015.02.006
  74. Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Stevenson A, Hallsworth JE, et al. 2015. Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int. J. Cosmet. Sci. 37: 98-107. https://doi.org/10.1111/ics.12175
  75. Bisht G, Srivastava S, Kulshreshtha R, Sourirajan A, Baumler DJ, Dev K. 2020. Applications of red pigments from psychrophilic Rhodonellum psychrophilum GL8 in health, food and antimicrobial finishes on textiles. Process Biochem. 94: 15-29. https://doi.org/10.1016/j.procbio.2020.03.021
  76. Sawipak S, Research SW-P in N, 2006 U. The study of bacteria producing bluish-purple pigment and use for cotton dyeing.
  77. Kanelli M, Mandic M, Kalakona M, Vasilakos S, Kekos D, Nikodinovic-Runic J, et al. 2018. Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front. Microbiol. 9: 1495. https://doi.org/10.3389/fmicb.2018.01495
  78. Kanelli M, Mandic M, Kalakona M, Vasilakos S, Kekos D, Nikodinovic-Runic J, et al. 2018. Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front Microbiol. 9: 1495. https://doi.org/10.3389/fmicb.2018.01495
  79. Kothari V, Sharma S, Padia D. 2017. Recent research advances on Chromobacteriumviolaceum. Asian Pac. J. Trop. Med. 10: 744-752. https://doi.org/10.1016/j.apjtm.2017.07.022
  80. Ahmad WA, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF. 2012. Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl. Biochem. Biotechnol. 167: 1220-1234. https://doi.org/10.1007/s12010-012-9553-7
  81. March JC, Bentley WE. 2004. Quorum sensing and bacterial cross-talk in biotechnology. Curr. Opin. Biotechnol. 15: 495-502. https://doi.org/10.1016/j.copbio.2004.08.013
  82. Liu Z, Wang W, Zhu Y, Gong Q, Yu W, Lu X. 2013. Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum. FEMS Microbiol. Lett. 341: 37-44. https://doi.org/10.1111/1574-6968.12086
  83. Xu X, Tian L, Zhang S, Jiang L, Zhang Z, Huang H. 2019. Complete genome sequence of Janthinobacterium sp. B9-8, a violaceinproducing bacterium isolated from low-temperature sewage. Microb. Pathog. 128: 178-183. https://doi.org/10.1016/j.micpath.2019.01.003
  84. Lu Y, Wang L, Xue Y, Zhang C, Xing XH, Lou K, et al. 2009. Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochem. Eng. J. 43: 135-141. https://doi.org/10.1016/j.bej.2008.09.009
  85. Ambrozic Avgustin J, Zgur Bertok D, Kostanjsek R, Avgustin G. 2013. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek 103: 763-769. https://doi.org/10.1007/s10482-012-9858-0
  86. Tsukamot T, Yasuj H, Hata T, Hayasaka S, Kato H. 2000. Isolation of bacteria producing bluish-purple pigment and use for dyeing. vol. 34.
  87. Wang H, Lu Y, Xue Y, Ruan Z, Jiang R, Xing X, et al. 2008. Separation, purification and structure identification of purple pigments from Duganella B2. Huagong Xuebao/J. Chem. Ind. Eng. 59: 630-635.
  88. Li W-J, Zhang Y-Q, Park D-J, Li C-T, Xu L-H, Kim C-J, et al. 2004. Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 54: 1811-1814. https://doi.org/10.1099/ijs.0.63141-0
  89. de Boer W, Leveau JHJ, Kowalchuk GA, Klein Gunnewiek PJA, Abeln ECA, Figge MJ, et al. 2004. Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int. J. Syst. Evol. Microbiol. 54: 857-864. https://doi.org/10.1099/ijs.0.02920-0
  90. MK Mannisto MH. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Elsevier 2006.
  91. August PR, Grossman TH, Minor C, Draper MP, Macneil IA, Pemberton JM, et al. 2000. Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J. Mol. Microbiol. Biotechnol. 2: 513-519.
  92. Agematu H, Suzuki K, Tsuya H. 2011. Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil. Biosci. Biotechnol. Biochem. 75: 2008-2010. https://doi.org/10.1271/bbb.100729
  93. Yada S, Wang Y, Zou Y, Nagasaki K, Hosokawa K, Osaka I, et al. 2008. Isolation and Characterization of two groups of novel marine bacteria producing violacein. Mar. Biotechnol. 10: 128-132. https://doi.org/10.1007/s10126-007-9046-9
  94. Wang Y, Ikawa A, Okaue S, Taniguchi S, Osaka I, Yoshimoto A, et al. 2008. Quorum sensing signaling molecules involved in the production of violacein by Pseudoalteromonas. Biosci. Biotechnol. Biochem. 72: 1958-1961. https://doi.org/10.1271/bbb.80090
  95. Zhang X, Enomoto K. 2011. Characterization of a gene cluster and its putative promoter region for violacein biosynthesis in Pseudoalteromonas sp. 520P1. Appl. Microbiol. Biotechnol. 90: 1963-1971. https://doi.org/10.1007/s00253-011-3203-9
  96. Dang HT, Komatsu S, Masuda H, Enomoto K. 2017. Characterization of LuxI and LuxR protein homologs of N-Acylhomoserine lactone-dependent quorum sensing system in Pseudoalteromonas sp. 520P1. Mar. Biotechnol. 19: 1-10. https://doi.org/10.1007/s10126-016-9726-4
  97. Batista JH, da Silva Neto JF. 2017. Chromobacterium violaceum pathogenicity: updates and insights from genome sequencing of novel Chromobacterium Species. Front. Microbiol. 8: 2213. https://doi.org/10.3389/fmicb.2017.02213
  98. Nakamura Y, Asada C, Sawada T. 2003. Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol. Bioprocess Eng. 8: 37-40. https://doi.org/10.1007/BF02932896
  99. Pontrelli S, Chiu TY, Lan EI, Chen FYH, Chang P, Liao JC. 2018. Escherichia coli as a host for metabolic engineering. Metab. Eng. 50: 16-46. https://doi.org/10.1016/j.ymben.2018.04.008
  100. Brady SF, Chao CJ, Handelsman J, Clardy J. 2001. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org. Lett. 3: 1981-1984. https://doi.org/10.1021/ol015949k
  101. Ahmetagic A, Pemberton JM. 2010. Stable high level expression of the violacein indolocarbazole anti-tumour gene cluster and the Streptomyces lividans amyA gene in E.coli K12. Plasmid 63: 79-85. https://doi.org/10.1016/j.plasmid.2009.11.004
  102. Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, et al. 2013. Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab. Eng 20: 29-41. https://doi.org/10.1016/j.ymben.2013.08.004
  103. Fang M, Wang T, Zhang C, Bai J, Zheng X, Zhao X, et al. 2016. Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab. Eng. 33: 41-51. https://doi.org/10.1016/j.ymben.2015.10.006
  104. Zhou Y, Fang MY, Li G, Zhang C, Xing XH. 2018. Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(S) involved in violacein biosynthesis. Appl. Biochem. Biotechnol. 186: 909-916. https://doi.org/10.1007/s12010-018-2787-2
  105. Yang D, Yoo SM, Gu C, Ryu JY, Lee JE, Lee SY. 2019. Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metab Eng 54: 180-190. https://doi.org/10.1016/j.ymben.2019.04.003
  106. Liu X-X, Li Y, Bai Z-H. Corynebacterium glutamicum as a robust microbial factory for production of value-added proteins and small molecules: fundamentals and applications. Microb. Cell Fact. Eng. Prod. Biomol., Elsevier. 2021: 235-263.
  107. Hoff J, Daniel B, Stukenberg D, Thuronyi BW, Waldminghaus T, Fritz G.2020. Vibrio natriegens: an ultrafast-growing marine bacterium as emerging synthetic biology chassis. Environ. Microbiol. 22: 4394-4408. https://doi.org/10.1111/1462-2920.15128
  108. Ellis GA, Tschirhart T, Spangler J, Walper SA, Medintz IL, Vora GJ. 2019. Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production. Mar. Drugs 17: 679. https://doi.org/10.3390/md17120679
  109. Borodina I, Nielsen J. 2014. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9: 609-620. https://doi.org/10.1002/biot.201300445
  110. Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS. 2018. Metabolic engineering in the host Yarrowia lipolytica. Metab. Eng. 50: 192-208. https://doi.org/10.1016/j.ymben.2018.07.016
  111. Tong Y, Zhou J, Zhang L, Xu P. 2019. Engineering oleaginous yeast Yarrowia lipolytica for violacein production: extraction, quantitative measurement and culture optimization 1: 1-19.
  112. Schaeffer N, Kholany M, Veloso TLM, Pereira JL, Ventura SPM, Nicaud JM, et al. 2019. Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chem. Commun. 55: 8643-8646. https://doi.org/10.1039/c9cc03831k
  113. Grewal PS, Samson JA, Baker JJ, Choi B, Dueber JE. 2020. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat. Chem. Biol.
  114. Moore SJ, Lai HE, Kelwick RJR, Chee SM, Bell DJ, Polizzi KM, et al. 2016. EcoFlex: a multifunctional MoClo kit for E. coli synthetic biology. ACS Synth. Biol. 5: 1059-1069. https://doi.org/10.1021/acssynbio.6b00031
  115. Chuang J, Boeke JD, Mitchell LA. 2018. Coupling yeast golden gate and VEGAS for efficient assembly of the violacein pathway in saccharomyces cerevisiae. Methods Mol. Biol. vol. 1671, pp. 211-225. Humana Press Inc. https://doi.org/10.1007/978-1-4939-7295-1_14
  116. Zhou Y, Li G, Dong J, Xing X hui, Dai J, Zhang C. 2018. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.Metab. Eng. 47: 294-302. https://doi.org/10.1016/j.ymben.2018.03.020
  117. Li T, Chen X, Cai Y, Dai J. 2018. Artificial Protein Scaffold System (AProSS): an efficient method to optimize exogenous metabolic pathways in Saccharomyces cerevisiae. Metab. Eng. 49: 13-20. https://doi.org/10.1016/j.ymben.2018.07.006
  118. Rantasalo A, Kuivanen J, Penttila M, Jantti J, Mojzita D. 2018. Synthetic toolkit for complex genetic circuit engineering in Saccharomyces cerevisiae. ACS Synth. Biol. 7: 1573-1587. https://doi.org/10.1021/acssynbio.8b00076
  119. Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, Shirke AN, et al. 2015. ePathOptimize?: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci. Rep. 5: 11301. https://doi.org/10.1038/srep11301
  120. Gwon D, Seok JY, Jung GY, Lee JW. 2021. Biosensor-assisted adaptive laboratory evolution for violacein production. Int. J. Mol. Sci. 22: 6594. https://doi.org/10.3390/ijms22126594
  121. Vareda JP, Valente AJM, Duraes L. 2019. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J. Environ. Manage 246: 101-118. https://doi.org/10.1016/j.jenvman.2019.05.126
  122. Lopreside A, Wan X, Michelini E, Roda A, Wang B. 2019. Comprehensive profiling of diverse genetic reporters with application to whole-cell and cell-free biosensors. Anal. Chem. 91: 15284-15292. https://doi.org/10.1021/acs.analchem.9b04444
  123. Wang D, Zheng Y, Fan X, Xu L, Pang T, Liu T, et al. 2020. Visual detection of Hg2+ by manipulation of pyocyanin biosynthesis through the Hg2+-dependent transcriptional activator MerR in microbial cells. J. Biosci. Bioeng. 129: 223-228. https://doi.org/10.1016/j.jbiosc.2019.08.005
  124. Guo Y, Hui C, Liu L, Chen M, Huang H. 2021. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci. Rep. 11: 1-13. https://doi.org/10.1038/s41598-020-79139-8
  125. Mendes AS, De Carvalho JE, Duarte MCT, Duran N, Bruns RE. 2001. Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol. Lett. 23: 1963-1969. https://doi.org/10.1023/A:1013734315525
  126. Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, et al.2008. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the Salamander Plethodon cinereus. J. Chem. Ecol. 34: 1422-1429. https://doi.org/10.1007/s10886-008-9555-7
  127. Ofek M, Hadar Y, Minz D. 2012. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One 7: e40117. https://doi.org/10.1371/journal.pone.0040117
  128. Nakamura Y, Sawada T, Morita Y, Engineering ET-B. 2002. Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biotechem. Eng. J. 12: 79-86. https://doi.org/10.1016/S1369-703X(02)00079-7
  129. Kuzyk SB, Pritchard AO, Plouffe J, Sorensen JL, Yurkov V. 2021. Psychrotrophic violacein-producing bacteria isolated from Lake Winnipeg, Canada. J. Great Lakes Res. 47: 715-724. https://doi.org/10.1016/j.jglr.2020.04.008
  130. Duran N, Menck CFM. 2001. Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit. Rev. Microbiol. 27: 201-222. https://doi.org/10.1080/20014091096747
  131. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, De Vries EGE, et al. 2013. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur. J. Cancer 49: 219-230. https://doi.org/10.1016/j.ejca.2012.05.005