Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.9.1100

Ras GTPases and Ras GTPase Activating Proteins (RasGAPs) in Human Disease  

Chang, Jong-Soo (Department of Life Science, College of Science and Technology, Daejin University)
Publication Information
Journal of Life Science / v.28, no.9, 2018 , pp. 1100-1117 More about this Journal
Abstract
The Ras superfamily of small G-proteins acts as a molecular switch on the intracellular signaling pathway. Upon ligand stimulation, inactive GTPases (Ras-GDP) are activated (Ras-GTP) using guanine nucleotide exchange factor (GEF) and transmit signals to their downstream effectors. Following signal transmission, active Ras-GTP become inactive Ras-GDP and cease signaling. However, the intrinsic GTPase activity of Ras proteins is weak, requiring Ras GTPase-activating protein (RasGAP) to efficiently convert RAS-GTP to Ras-GDP. Since deregulation of the Ras pathway is found in nearly 30% of all human cancers, it might be useful to clarify the structural and physiological roles of Ras GTPases. Recently, RasGAP has emerged as a new class of tumor-suppressor protein and a potential therapeutic target for cancer. Therefore, it is important to clarify the physiological roles of the individual GAPs in human diseases. The first RasGAP discovered was RASA1, also known as p120 RasGAP. RASA1 is widely expressed, independent of cell type and tissue distribution. Subsequently, neurofibromatosis type 1 (NF1) was discovered. The remaining GAPs are affiliated with the GAP1 and synaptic GAP (SynGAP) families. There are more than 170 Ras GTPases and 14 Ras GAP members in the human genome. This review focused on the current understanding of Ras GTPase and RasGAP in human diseases, including cancers.
Keywords
NF1; RASA1; RasGAP; Ras GTPase; tumor suppressor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 DeClue, J. E., Papageorge, A. G., Fletcher, J. A., Diehl, S. R., Ratner, N., Vass, W. C. and Lowy, D. R. 1992. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69, 265-273.   DOI
2 Diez, D., Sanchez-Jimenez, F. and Ranea, J. A. 2011. Evolutionary expansion of the Ras switch regulatory module in eukaryotes. Nucleic Acids Res. 39, 5526-5537.   DOI
3 Dong, P., Nabeshima, K., Nishimura, N., Kawakami, T., Hachisuga, T., Kawarabayashi, T. and Iwasaki, H. 2006. Overexpression and diffuse expression pattern of IQGAP1 at invasion fronts are independent prognostic parameters in ovarian carcinomas. Cancer Lett. 243, 120-127.   DOI
4 Donovan, S., Shannon, K. M. and Bollag, G. 2002. GTPase activating proteins: critical regulators of intracellular signaling. Biochim. Biophys. Acta. 1602, 23-45.
5 Bos, J. L. 1989. Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682-4689.
6 Bos, J. L., Rehmann, H. and Wittinghofer, A. 2007. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877.   DOI
7 Honda, A. 1., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A. J., Frohman, M. A. and Kanaho, Y. 1999. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521-523.   DOI
8 Hamdan, F. F., Gauthier, J., Spiegelman, D., Noreau, A., Yang, Y., Pellerin, S., Dobrzeniecka, S., Cote, M., Perreau-Linck, E., Carmant, L., D'Anjou, G., Fombonne, E., Addington, A. M., Rapoport, J. L., Delisi, L. E., Krebs, M. O., Mouaffak, F., Joober, R., Mottron, L., Drapeau, P., Marineau, C., Lafreniere, R. G., Lacaille, J. C., Rouleau, G. A., Michaud, J. L. and Synapse to Disease Group. 2009. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. New Engl. J. Med. 360, 599-605.   DOI
9 Hedman, A. C., Smith, J. M. and Sacks, D. B. 2015. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep. 16, 427-44.   DOI
10 Henkemeyer, M., Rossi, D. J., Holmyard, D. P., Puri, M. C., Mbamalu, G., Harpal, K., Shih, T. S., Jacks, T. and Pawson, T. 1995. Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377, 695-701.   DOI
11 Hordijk, P. L. 2006. Regulation of NADPH oxidases: the role of Rac proteins. Circ. Res. 98, 453-462.   DOI
12 Hu, K. Q. and Settleman, J. 1997. Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J. 16, 473-483.   DOI
13 Ismat, F. A., Xu, J., Lu, M. M. and Epstein, J. A. 2006. The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1 mice. J. Clin. Invest. 116, 2378-2384.
14 Lubeck, B. A., Lapinski, P. E., Oliver, J. A., Ksionda, O., Parada, L. F., Zhu, Y., Maillard, I., Chiang, M., Roose, J. and King, P. D. 2015. Cutting edge: Codeletion of the Ras GTPase-activating proteins (RasGAPs) neurofibromin 1 and p120 RasGAP in T cells results in the development of T cell acute lymphoblastic leukemia. J. Immunol. 195, 31-35.   DOI
15 Lockyer, P. J., Bottomley, J. R., Reynolds, J. S., McNulty, T. J., Venkateswarlu, K., Potter, B. V., Dempsey, C. E. and Cullen, P. J. 1997. Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors $GAP1^{IP4BP}$ and $GAP1^m$ result from the $GAP1^{IP4BP}$ PH domain directing plasma membrane targeting. Curr. Biol. 7, 1007-1010.   DOI
16 Lockyer, P. J., Kupzig, S. and Cullen, P. J. 2001. CAPRI regulates $Ca^{(2+)}$-dependent inactivation of the Ras-MAPK pathway. Curr. Biol. 11, 981-986.   DOI
17 Lockyer, P. J., Wennstrom, S., Kupzig, S., Venkateswarlu, K., Downward, J. and Cullen, P. J. 1999. Identification of the ras GTPase-activating protein $GAP1(^m)$ as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo. Curr. Biol. 9, 265-268.   DOI
18 Luo, J., Manning, B. D. and Cantley, L. C. 2003. Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell. 4. 257-262.   DOI
19 Yarwood, S., Bouyoucef-Cherchalli, D., Cullen, P. J. and Kupzig, S. 2006. The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling. Biochem. Soc. Trans. 34, 846-850.   DOI
20 Zhang, D. and Aravind, L. 2010. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene 469, 18-30.   DOI
21 Prior, I. A., Lewis, P. D. and Mattos, C. 2012. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 24572467.
22 Dote, H., Toyooka, S., Tsukuda, K., Yano, M., Ota, T., Murakami, M., Naito, M., Toyota, M., Gazdar, A. F. and Shimizu, N. 2005. Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in gastrointestinal tumour. Br. J. Cancer 92, 1117-1125.   DOI
23 Dote. H., Toyooka, S., Tsukuda, K., Yano, M., Ouchida, M., Doihara, H., Suzuki, M., Chen, H., Hsieh, J. T., Gazdar, A. F. and Shimizu, N. 2004. Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clin. Cancer Res. 10, 2082-2089.   DOI
24 Du, K. and Montminy, M. 1998. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 32377-32379.   DOI
25 Perucho, M., Goldfarb, M., Shimizu, K., Lama, C., Fogh, J. and Wigler, M. 1981. Human-tumor-derived cell lines contain common and different transforming genes. Cell 27, 467-476.   DOI
26 Price, S. R., Nightingale, M., Tsai, S. C., Williamson, K. C., Adamik, R., Chen, H. C., Moss, J. and Vaughan, M. 1988. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA. Proc. Natl. Acad. Sci. USA. 85, 5488-5491.   DOI
27 Pylayeva-Gupta, Y., Grabocka, E. and Bar-Sagi, D. 2011. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761-774.   DOI
28 Ramjaun, A. R. and Downward, J. 2007. Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 6, 2902-2905.   DOI
29 Randazzo, P. A., Nie, Z., Miura, K. and Hsu, V. W. 2000. Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci STKE. 2000, re1.   DOI
30 Reiner, D. J. and Lundquist, E. A. 2016. Small GTPases. WormBook. 10, 1895.
31 Ren, J. G., Li, Z. and Sacks, D. B. 2007. IQGAP1 modulates activation of B-Raf. Proc. Natl. Acad. Sci. USA. 104, 10465-10469.   DOI
32 Repasky, G. A., Chenette, E. J. and Der, C. J. 2004. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trend Cell Biol. 14, 639-647.   DOI
33 Van Aelst, L., Barr, M., Marcus, S., Polverino, A. and Wigler, M. 1993. Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA. 90, 6213-6217.   DOI
34 Tong, J., Hannan, F., Zhu, Y., Bernards, A. and Zhong, Y. 2002. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat. Neurosci. 5, 95-96.   DOI
35 Touchot, N., Chardin, P. and Tavitian, A. 1987. Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc. Natl. Acad. Sci. USA. 84, 8210-8214.   DOI
36 Tsuchida, N., Ryder, T. and Ohtsubo, E. 1982. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine. Science 217, 937-939.   DOI
37 van der Geer, P., Henkemeyer, M., Jacks, T. and Pawson, T. 1997. Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap. Mol. Cell. Biol. 17, 1840-1847.   DOI
38 Vanhaesebroeck, B. and Alessi, D. R. 2000. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561-576.
39 Vazquez, L. E., Chen, H. J., Sokolova, I., Knuesel, I. and Kennedy, M. B. 2004. SynGAP regulates spine formation. J. Neurosci. 24, 8862-8872.   DOI
40 Viskochil, D., Buchberg, A. M., Xu, G., Cawthon, R. M., Stevens, J., Wolff, R. K., Culver, M., Carey, J. C., Copeland, N. G., Jenkins, N. A., White, R. and O'Connell, P. 1990. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187-192.   DOI
41 Vogel, U. S., Dixon, R. A., Schaber, M. D., Dihl, R. E., Marshall, M. S., Scolnick, E. M., Sigal, I. S. and Gibbs, J. B. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335, 90-93.   DOI
42 Zhang, J., Guo, J., Dzhagalov, I. and He, Y. W. 2005. An essential function for the calcium-promoted Ras inactivator in Fc gamma receptor-mediated phagocytosis. Nat. Immunol. 6, 911-919.   DOI
43 Zhang, D. and Aravind, L. 2012. Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle 11, 3861-3875.   DOI
44 Zhang, H., He, Y., Dai, S., Xu, Z., Luo, Y., Wan, T., Luo, D., Jones, D., Tang, S., Chen, H., Sessa, W. C. and Min, W. 2008. AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and inflammatory angiogenesis in mice. J. Clin. Invest. 118, 3904-3916.   DOI
45 Zhang, H., Zhang, R., Luo, Y., D'Alessio, A., Pober, J. S. and Min, W. 2004. AIP1/DAB2IP, a novel member of the Ras-GAP family, transduces TRAF2-induced ASK1-JNK activation. J. Biol. Chem. 279, 44955-44965.   DOI
46 Zhang, R., He, X., Liu, W., Lu, M., Hsieh, J. T. and Min, W. 2003. AIP1 mediates TNF-alpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. J. Clin. Invest. 111, 1933-1943.   DOI
47 Zhang, X. F., Settleman, J., Kyriakis, J. M., Takeuchi-Suzuki, E., Elledge, S. J., Marshall, M. S., Bruder, J. T., Rapp, U. R. and Avruch, J. 1993. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308-318.   DOI
48 Ekman, S., Thuresson, E. R., Heldin, C. H. and Ronnstrand, L. 1999. Increased mitogenicity of an alphabeta heterodimeric PDGF receptor complex correlates with lack of RasGAP binding. Oncogene 18, 2481-248.   DOI
49 Duggan, Zheng, S. L., Knowlton, M., Benitez, D., Dimitrov, L., Wiklund, F., Robbins, C., Isaacs, S. D., Cheng, Y., Li, G., Sun, J, Chang, B. L., Marovich, L., Wiley, K. E., Stattin, P., Adami, H. O., Gielzak, M., Yan, G., Sauvageot, J., Liu, W., Kim, J. W., Bleeker, E. R., Meyers, D. A., Trock, B. J., Partin, A. W., Walsh, P. C., Isaacs, W. B., Gronberg, H., Xu, J. and Carpten, J. D. 2007. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J. Nat. Cancer Inst. 99, 1836-1844.   DOI
50 Eerola, I., Boon, L. M., Mulliken, J. B., Burrows, P. E., Dompmartin, A., Watanabe, S., Vanwijck, R. and Vikkula, M. 2003. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am. J. Hum. Genet. 73, 1240-1249.   DOI
51 Engelman, J. A. 2009. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550-562.   DOI
52 Brems, H., Park, C., Maertens, O., Pemov, A., Messiaen, L., Upadhyaya, M., Claes, K., Beert, E., Peeters, K., Mautner, V., Sloan, J. L., Yao, L., Lee, C. C., Sciot, R., De Smet, L., Legius, E. and Stewart, D. R. 2009. Glomus tumors in neurofibromatosis type 1: genetic, functional, and clinical evidence of a novel association. Cancer Res. 69, 7393-7401.   DOI
53 Bourguignon, L. Y., Gilad, E., Rothman, K. and Peyrollier, K. 2005. Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J. Biol. Chem. 280, 11961-11972.   DOI
54 Brannan, C. I., Perkins, A. S., Vogel, K. S., Ratner, N., Nordlund, M. L., Reid, S. W., Buchberg, A. M., Jenkins, N. A., Parada, L. F. and Copeland, N. G. 1994. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8, 1019-1029.   DOI
55 Brems, H., Chmara, M., Sahbatou, M., Denayer, E., Taniguchi, K., Kato, R., Somers, R., Messiaen, L., De Schepper, S., Fryns, J. P., Cools, J., Marynen, P., Thomas, G., Yoshimura, A. and Legius, E. 2007. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat. Genet. 39, 1120-1126.   DOI
56 Brill, S., Li, S., Lyman, C. W., Church, D. M., Wasmuth, J. J., Weissbach, L., Bernards, A. and Snijders, A. J. 1996. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol. Cell. Biol. 16, 4869-4878.   DOI
57 Bryant, S. S., Briggs, S., Smithgall, T. E., Martin, G. A., McCormick, F., Chang, J. H., Parsons, S. J. and Jove, R. 1995. Two SH2 domains of p120 Ras GTPase-activating protein bind synergistically to tyrosine phosphorylated p190 Rho GTPase-activating protein. J. Biol. Chem. 270, 17947-17952.   DOI
58 Erickson, J. W., Cerione, R. A. and Hart, M. J. 1997. Identification of an actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase. J. Biol. Chem. 26, 24443-24447.
59 Fantl, W. J., Escobedo, J. A., Martin, G. A., Turck, C. W., del Rosario, M., McCormick, F. and Williams, L. T. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69, 413-42.3   DOI
60 Feng, M., Bao, Y., Li, J., Gong, M., Wang, J., Marzese, D. M., Donovan, N., Tan, E. Y., Hoon, D. S. and Yu, Q. 2014. RASAL2 activates Rac1 to promote triple-negative breast cancer progression. J. Clin. Invest. 124, 5291-5304.   DOI
61 Jeong, J. H., Wang, Z., Guimaraes, A. S., Ouyang, X., Figueiredo, J. L., Ding, Z., Jiang, S., Guney, I., Kang, G. H., Shin, E., Hahn, W. C., Loda, M. F., Abate-Shen, C., Weissleder, R. and Chin, L. 2008. BRAF activation initiates but does not maintain invasive prostate adenocarcinoma. PLoS One 3, e3949.   DOI
62 Iwashita, S., Kobayashi, M., Kubo, Y., Hinohara, Y., Sezaki, M., Nakamura, K., Suzuki-Migishima, R., Yokoyama, M., Sato, S., Fukuda, M., Ohba, M., Kato, C., Adachi, E. and Song, S. Y. 2007. Versatile roles of R-Ras GAP in neurite formation of PC12 cells and embryonic vascular development. J. Biol. Chem. 282, 3413-3417.
63 Jacks, T., Shih, T. S., Schmitt, E. M., Bronson, R. T., Bernards, A. and Weinberg, R. A. 1994. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat. Genet. 7, 353-361.   DOI
64 Jaffee, E. M., Hruban, R. H., Canto, M., Kern, S. E. 2002. Focus on pancreas cancer. Cancer Cell. 2, 25-28.   DOI
65 Jin, H., Wang, X., Ying, J., Wong, A. H., Cui, Y., Srivastava, G., Shen, Z. Y., Li, E. M., Zhang, Q., Jin, J., Kupzig, S., Chan, A. T., Cullen, P. J. and Tao, Q. 2007. Epigenetic silencing of a $Ca^{(2+)}$-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. Proc. Natl. Acad. Sci. USA. 104, 12353-12348.   DOI
66 Jin, S. H., Akiyama, Y., Fukamachi, H., Yanagihara, K., Akashi, T. and Yuasa, Y. 2008. IQGAP2 inactivation through aberrant promoter methylation and promotion of invasion in gastric cancer cells. Int. J. Cancer 122, 1040-1046.
67 Johannessen, C. M., Reczek, E. E., James, M. F., Brems, H., Legius, E. and Cichowski, K. 2005. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. USA. 102, 8573-8578.   DOI
68 Maertens, O., Brems, H., Vandesompele, J., De Raedt, T., Heyns, I., Rosenbaum, T., De Schepper, S., De Paepe, A., Mortier, G., Janssens, S., Speleman, F., Legius, E. and Messiaen, L. 2006. Comprehensive NF1 screening on cultured Schwann cells from neurofibromas. Hum. Mutat. 27, 1030-1040.   DOI
69 Macmurdo, C. F., Wooderchak-Donahue, W., Bayrak-Toydemir, P., Le, J. Wallenstein, M. B., Milla, C., Teng, J. M., Bernstein, J. A. and Stevenson, D. A. 2016. RASA1 somatic mutation and variable expressivity in capillary malformation/ arteriovenous malformation (CM/AVM) syndrome. Am. J. Med. Genet. 170, 1450-1454.   DOI
70 Maekawa, M., Li, S., Iwamatsu, A., Morishita, T., Yokota, K., Imai, Y., Kohsaka, S., Nakamura, S. and Hattori, S. 1994. A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions. Mol. Cell. Biol. 14, 6879-6885.   DOI
71 Malik, S. N., Brattain, M., Ghosh, P. M., Troyer, D. A., Prihoda, T., Bedolla, R. and Kreisberg, J. I. 2002. Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin. Cancer Res. 8, 1168-1171.
72 Manning, B. D. and Cantley, L. C. 2007. AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274.   DOI
73 Marchuk, D. A., Saulino, A. M., Tavakkot, R., Swaroop, M., Wallace, M. R., Andersen, L. B., Mitchell, A. L., Gutmann, D. H., Boguski, M. and Collins, F. S. 1991. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11, 931-940.   DOI
74 Margolis, B., Li, N., Koch, A., Mohammadi, M., Hurwitz, D. R., Zilberstein, A., Ullrich, A., Pawson, T. and Schlessinger, J. 1990. The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-gamma. EMBO J. 9, 4375-4380.   DOI
75 Wallace, M. R., Marchuk, D. A., Andersen, L. B., Letcher, R., Odeh, H. M., Saulino, A. M., Fountain, J. W., Brereton, A., Nicholson, J., Mitchell, A. L. Brownstein, B. H. and Collins, F. S. 1990. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249, 181-186.   DOI
76 Revencu, N., Boon, L. M., Mulliken, J. B., Enjolras, O., Cordisco, M. R., Burrows, P. E., Clapuyt, P., Hammer, F., Dubois, J., Baselga, E., Brancati, F., Carder, R., Quintal, J. M., Dallapiccola, B., Fischer, G., Frieden, I. J., Garzon, M., Harper, J., Johnson-Patel, J., Labreze, C., Martorell, L., Paltiel, H. J., Pohl, A., Prendiville, J., Quere, I., Siegel, D. H., Valente, E. M., Van Hagen, A., Van Hest, L., Vaux, K. K., Vicente, A., Weibel, L., Chitayat, D. and Vikkula, M. 2008. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum. Mutat. 29, 959-996.   DOI
77 Revencu, N., Boon, L. M., Mendola, A., Cordisco, M. R., Dubois, J., Clapuyt, P., Hammer, F., Amor, D. J., Irvine, A. D., Baselga, E., Dompmartin, A., Syed, S., Martin-Santiago, A., Ades, L., Collins, F., Smith, J., Sandaradura, S., Barrio, V. R., Burrows, P. E., Blei, F., Cozzolino, M., Brunetti-Pierri, N., Vicente, A., Abramowicz, M., Desir, J., Vilain, C., Chung, W. K., Wilson, A., Gardiner, C. A., Dwight, Y., Lord, D. J., Fishman, L., Cytrynbaum, C., Chamlin, S., Ghali, F., Gilaberte, Y., Joss, S., Boente Mdel, C., Leaute- Labreze, C., Delrue, M. A., Bayliss, S., Martorell, L., Gonzalez-Ensenat, M. A., Mazereeuw-Hautier, J., O'Donnell, B., Bessis, D., Pyeritz, R. E., Salhi, A., Tan, O. T., Wargon, O., Mulliken, J. B. and Vikkul, M. 2013. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum. Mut. 34, 1632-1641.   DOI
78 Vojtek, A. B., Hollenberg, S. M. and Cooper, J. A. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205-214.   DOI
79 Walker, J. A., Gouzi, J. Y., Long, J. B., Huang, S., Maher, R. C., Xia, H., Khalil, K., Ray, A., Van Vactor, D., Bernards, R. and Bernards, A. 2013. Genetic and functional studies implicate synaptic overgrowth and ring gland cAMP/PKA signaling defects in the Drosophila melanogaster neurofibromatosis-1 growth deficiency. PLoS Genet. 9, e1003958.   DOI
80 Walker, S. A., Kupzig, S., Bouyoucef, D., Davies, L. C., Tsuboi, T., Bivona, T. G., Cozier, G. E., Lockyer, P. J., Buckler, A., Rutter, G. A., Allen, M. J., Philips, M. R. and Cullen, P. J. 2004. Identification of a Ras GTPase-activating protein regulated by receptor-mediated $Ca^{2+}$ oscillations. EMBO J. 23, 1749-1760.   DOI
81 Wan, Y. J., Yang, Y., Leng, Q. L., Lan, B., Jia, H. Y., Liu, Y. H., Zhang, C. Z. and Cao, Y. 2014. Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells. Cell. Signal. 26, 2202-2209.   DOI
82 Wang, S., Watanabe, T., Noritake, J., Fukata, M., Yoshimura, T., Itoh, N., Harada, T., Nakagawa, M., Matsuura, Y., Arimura, N. and Kaibuchi, K. 2007. IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. J. Cell Sci. 120, 567-577.   DOI
83 Wang, X. X., Li, X. Z., Zhai, L. Q., Liu, Z. R., Chen, X. J. and Pei, Y. 2013. Overexpression of IQGAP1 in human pancreatic cancer. Hepatobiliary Pancreat. Dis. Int. 12, 540-545.   DOI
84 Cantley, L. C. 2002. The phosphoinositide 3-kinase pathway. Science 296, 1655-1657.   DOI
85 Burridge, K. and Wennerberg, K. 2004. Rho and Rac take center stage. Cell 116, 167-179.   DOI
86 Burrows, N., Telfer, B., Brabant, G. and Williams, K. J. 2013. Inhibiting the phosphatidylinositide 3-kinase pathway blocks radiation-induced metastasis associated with Rho-GTPase and Hypoxia-inducible factor-1 activity. Radiother. Oncol. 108, 548-553.   DOI
87 Calvisi, D. F., Ladu, S., Conner, E. A., Seo, D., Hsieh, J. T., Factor, V. M. and Thorgeirsson, S. S. 2011, Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer. J. Hepatol. 54, 311-319.   DOI
88 Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. and Karsenti, E. 2001. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat. Cell Biol. 3, 228-234.   DOI
89 Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D. and Downward, J. 1996. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15, 2442-2451.   DOI
90 Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D. and Downward, J. 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527-532.   DOI
91 Buday, L. and Downward, J. 2008. Many faces of Ras activation. Biochim. Biophys. Acta. 1786, 178-187.
92 Carlisle, H. J., Manzerra, P., Marcora, E. and Kennedy, M. B. 2008. SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J. Neurosci. 28, 13673-13683.   DOI
93 Castellano, E. and Downward, J. 2011. RAS interaction with PI3K: More than just another effector pathway. Genes Cancer 2, 261-274.   DOI
94 Cawthon, R. M., Weiss, R., Xu, G. F., Viskochil, D., Culver, M., Stevens, J., Robertson, M., Dunn, D., Gesteland, R., O'Connell, P. and White, R. 1990. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62, 193-201.   DOI
95 Chang, J. S. 2003. Pleckstrin homology domain. Biochem. Mol. Biol. News. 23, 209-216
96 Karnoub, A. E. and Weinberg, R. A. 2008. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell. Biol. 9, 517-531.   DOI
97 Jones, D. H., Morris, J. B., Morgan, C. P., Kondo, H., Irvine, R. F. and Cockcroft, S. 2000. Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J. Biol. Chem. 275, 13962-13866.   DOI
98 Jouhilahti, E. M., Peltonen, S., Heape, A. M. and Peltonen, J. 2011. The pathoetiology of neurofibromatosis 1. Am. J. Pathol. 178, 1932-1939.   DOI
99 Kahn, R. A. and Gilman, A. G.1984. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J. Biol. Chem. 259, 6228-6234.
100 Kazlauskas, A., Ellis, C., Pawson, T. and Cooper, J. A. 1990. Binding of GAP to activated PDGF receptors. Science 247, 1578-1581.   DOI
101 Kim, J. H., Lee, H. K., Takamiya, K. and Huganir, R. L. 2003. The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J. Neurosci. 23, 1119-1124.   DOI
102 Kim, J. H., Liao, D., Lau, L. F. and Huganir, R. L. 1998. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683-691.   DOI
103 Knuesel, I., Elliott, A., Chen, H. J., Mansuy, I. M. and Kennedy, M. B. 2005. A role for synGAP in regulating neuronal apoptosis. Eur. J. Neurosci. 21, 611-621.   DOI
104 McLaughlin, S. K., Olsen, S. N., Dake, B., De Raedt, T., Lim, E., Bronson, R. T., Beroukhim, R., Polyak, K., Brown, M., Kuperwasser, C. and Cichowski, K. 2013. The RasGAP gene, RASAL2, is a tumor and metastasis suppressor. Cancer Cell 24, 365-378.   DOI
105 Martin, G. A., Viskochil, D., Bollag, G., McCabe, P. C., Crosier, W. J., Haubruck, H., Conroy, L., Clark, R., O'Connell, P., Cawthon, R. M., Innis, M. A. and McCormick, F. 1990. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63, 843-849.   DOI
106 McClatchey, A. I. 2007. Neurofibromatosis. Annu. Rev. Pathol. 2, 191-216.   DOI
107 McDonald, K. L., O'Sullivan, M. G., Parkinson, J. F., Shaw, J. M., Payne, C. A., Brewer, J. M., Young, L., Reader, D. J., Wheeler, H. T., Cook, R. J., Biggs, M. T., Little, N. S., Teo, C., Stone, G. and Robinson, B. G. 2007. IQGAP1 and IGFBP2: valuable biomarkers for determining prognosis in glioma patients. J. Neuropathol. Exp. Neurol. 66, 205-417.
108 Messiaen, L., Yao, S., Brems, H., Callens, T., Sathienkijkanchai, A., Denayer, E., Spencer, E., Arn, P., Babovic-Vuksanovic, D., Bay, C., Bobele, G., Cohen, B. H., Escobar, L., Eunpu, D., Grebe, T., Greenstein, R., Hachen, R., Irons, M., Kronn, D., Lemire, E., Leppig, K., Lim, C., McDonald, M., Narayanan, V., Pearn, A., Pedersen, R., Powell, B., Shapiro, L. R., Skidmore, D., Tegay, D., Thiese, H., Zackai, E. H., Vijzelaar, R., Taniguchi, K., Ayada, T., Okamoto, F., Yoshimura, A., Parret, A., Korf, B. and Legius, E. 2009. Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome. JAMA. 302, 2111-2118.   DOI
109 Roy, M., Li, Z. and Sacks, D. B. 2004. IQGAP1 binds ERK2 and modulates its activity. J. Biol. Chem. 279, 17329-17337.   DOI
110 Roof, R. W., Haskell, M. D., Dukes, B. D., Sherman, N., Kinter, M. and Parsons, S. J 1998. Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAPp120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex formation. Mol. Cell. Biol. 18, 7052-7063.   DOI
111 Roy, M., Li, Z. and Sacks, D. B. 2005. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol. Cell. Biol. 25, 7940-7952.   DOI
112 Rumbaugh, G., Adams, J. P., Kim, J. H. and Huganir, R. L. 2006. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc. Natl. Acad. Sci. USA. 103, 4344-4351.   DOI
113 Sahai, E. and Marshall, C. J. 2002. RHO-GTPases and cancer. Nat. Rev. Cancer 2, 133-142.   DOI
114 Warne, P. H., Viciana, P. R. and Downward, J. 1993. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352-353.   DOI
115 Kolfschoten, I. G., van Leeuwen, B., Berns, K., Mullenders, J., Beijersbergen, R. L., Bernards, R., Voorhoeve, P. M. and Agami, R. 2005. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121, 849-858.   DOI
116 Wang, Y., Boguski, M., Riggs, M., Rodgers, L. and Wigler, M. 1991. sar1, a gene from Schizosaccharomyces pombe encoding a protein that regulates ras1. Cell Regul. 2, 453-465.   DOI
117 Wang, Z., Tseng, C. P., Pong, R. C., Chen, H., McConnell, J. D., Navone, N. and Hsieh, J. T. 2002. The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J. Biol. Chem. 277, 12622-12631.   DOI
118 Weeks, A., Okolowsky, N., Golbourn, B., Ivanchuk, S., Smith, C. and Rutka, J. T. 2012. ECT2 and RASAL2 mediate mesenchymal-amoeboid transition in human astrocytoma cells. Am. J. Pathol. 181, 662-674.   DOI
119 Weis, K. 2003. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441-451.   DOI
120 Weissbach, L., Settleman, J., Kalady, M. F., Snijders, A. J., Murthy, A. E., Yan, Y. X. and Bernards, A. 1994. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. J. Biol. Chem. 269, 20517-20521.
121 Welti, S., Fraterman, S., D'Angelo, I., Wilm, M. and Scheffzek, K. 2007. The sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J. Mol. Biol. 366, 551-562.   DOI
122 Komiyama, N. H., Watabe, A. M., Carlisle, H. J., Porter, K., Charlesworth, P., Monti, J., Strathdee, D. J., O'Carroll, C. M, Martin, S. J., Morris, R. G., O'Dell, T. J. and Grant, S. G. 2002. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J. Neurosci. 22, 9721-9732.   DOI
123 Min, J., Zaslavsky, A., Fedele, G., McLaughlin, S. K., Reczek, E. E., De Raedt, T., Guney, I., Strochlic, D. E., MacConaill, L. E., Beroukhim, R., Bronson, R. T., Ryeom, S. Hahn, W. C., Loda, M. and Cichowski, K. 2010. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-${\kappa}B$. Nat. Med. 16, 286-294.   DOI
124 Saito, S., Kawamura, T., Higuchi, M., Kobayashi, T., Yoshita-Takahashi, M., Yamazaki, M., Abe, M., Sakimura, M., Kanda, Y., Kawamura, H., Jiang, S., Naito, M., Yoshizaki, T., Takahashi, M. and Fujii, M. 2015. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells. Eur. J. Immunol. 45, 1512-1523.   DOI
125 Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. and Wittinghofer, A. 1997. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338.   DOI
126 Schmidt, V. A., Chiariello, C. S., Capilla, E., Miller, F. and Bahou, W. F. 2008. Development of hepatocellular carcinoma in Iqgap2-deficient mice is IQGAP1 dependent. Mol. Cell. Biol. 28, 1489-1502.   DOI
127 Segev, N. 2001. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol. 13, 500-511.   DOI
128 Wennerberg, K. and Der, C. J. 2004. Rho-family GTPases: it's not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301-1312.   DOI
129 Wennerberg, K., Rossman, K. L. and Der, C. J. 2005. The Ras superfamily at a glance. J. Cell Sci. 118, 843-846.   DOI
130 Abramowicz, A. and Gos, M. 2014. Neurofibromin in neurofibromatosis type 1 - mutations in NF1gene as a cause of disease. Dev. Period. Med. 18, 297-306.
131 Komiyama, N. H., Watabe, A. M., Carlisle, H. J., Porter, K., Charlesworth, P., Monti, J., Strathdee, D. J., O'Carroll, C. M., Martin, S. J., Morris, R. G., O'Dell, T. J. and Grant, S. G. 2004. SynGAP regulates spine formation. J. Neurosci. 24, 8862-8872.   DOI
132 Krapivinsky, G., Medina, I., Krapivinsky, L., Gapon, S. and Clapham, D. E. 2004. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43, 563-574.   DOI
133 Krontiris, T.G. and Cooper, G. M. 1981. Transforming activity of human tumor DNAs. Proc. Natl. Acad. Sci. USA. 78, 1181-1184.   DOI
134 Kulkami, S. V., Gish, G., van der Geer, P., Henkemeyer, M. and Pawson, T. 2000. Role of p120 Ras-Gap in directed movement. J. Cell Biol. 149, 457-470.   DOI
135 Kuroda, S., Fukata, M., Kobayashi, K., Nakafuku, M., Nomura, N., Iwamatsu, A. and Kaibuchi, K. 1996. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J. Biol. Chem. 271, 23363-23367.   DOI
136 Mitsuuchi, Y. and Testa, J. R. 2002. Cytogenetics and molecular genetics of lung cancer. Am. J. Med. Genet. 115, 183-188.   DOI
137 Serra, E., Rosenbaum, T., Winner, U., Aledo, R., Ars, E., Estivill, X., Lenard, H. G. and Lazaro, C. 2000. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Hum. Mol. Genet. 9, 3055-3064.   DOI
138 Sewell, J. L. and Kahn, R. A. 1988. Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc. Natl. Acad. Sci. USA. 85, 4620-4624.   DOI
139 Shen, M. M. and Abate-Shen, C. 2007. Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Res. 67, 6535-6538.   DOI
140 Kumar, D., Hassan, M. K., Pattnaik, N., Mohapatra, N. and Dixit, M. 2017. Reduced expression of IQGAP2 and higher expression of IQGAP3 correlates with poor prognosis in cancers. PLoS One 12, e0186977.   DOI
141 Lapinski, P. E., Bauler, T. J., Brown, E. J., Hughes, E. D., Saunders, T. L. and King, P. D. 2007. Generation of mice with a conditional allele of the p120 Ras GTPase-activating protein. Genesis 45, 762-767.   DOI
142 Westbrook, T. F., Martin, E. S., Schlabach, M. R., Leng, Y., Liang, A. C., Feng, B., Zhao, J. J., Roberts, T. M., Mandel, G., Hannon, G. J., Depinho, R. A., Chin, L. and Elledge, S. J. 2005. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837-848.   DOI
143 White C. D., Khurana, H., Gnatenko, D. V., Li, Z., Odze, R. D., Sacks, D. B. and Schmidt, V. A. 2010. IQGAP1 and IQGAP2 are reciprocally altered in hepatocellular carcinoma. BMC Gastroenterol. 10, 125.   DOI
144 White, C. D., Brown, M. D. and Sacks, D. B. 2009. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett. 583, 1817-1824.   DOI
145 White, C. D., Erdemir, H. H. and Sacks, D. B. 2012. IQGAP1 and its binding proteins control diverse biological functions. Cell. Signal. 24, 826-834.   DOI
146 Wilde, A. 1., Lizarraga, S. B., Zhang, L., Wiese, C., Gliksman, N. R., Walczak, C. E. and Zheng, Y. 2001. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat. Cell Biol. 3, 221-227.   DOI
147 Cherfils, J. and Zeghouf, M. 2013. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269-309.   DOI
148 Chen, H., Pong, R. C., Wang, Z. and Hsieh, J. T. 2002. Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: cloning and characterization. Genomics 79, 573-581.   DOI
149 Chen, H., Toyooka, S., Gazdar, A. F. and Hsieh, J. T. 2003. Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J. Biol. Chem. 278, 3121-313.0   DOI
150 Chen, Y. L., Huang, W. C., Yao, H. L., Chen, P. M., Lin, P. Y., Feng, F. Y. and Chu, P. Y. 2017. Down-regulation of RASA1 Is associated with poor prognosis in human hepatocellular carcinoma. Anticancer Res. 37. 781-785.   DOI
151 Cockcroft, S., Way, G., O'Luanaiqh, N., Sarri, E. and Fensome, A. 2002. Signalling role for ARF and phospholipase D in mast cell exocytosis stimulated by crosslinking of the high affinity FcepsilonR1 receptor. Mol. Immunol. 38, 1277-1282.   DOI
152 Nieborowska-Skorska, M., Kopinski, P. K., Ray, R., Hoser, G., Ngaba, D., Flis, S., Cramer, K., Reddy, M. M., Koptyra, M., Penserga, T., Glodkowska-Mrowka, E., Bolton, E., Holyoake, T. L., Eaves, C. J., Cerny-Reiterer, S., Valent, P., Hochhaus, A., Hughes, T. P., van der Kuip, H., Sattler, M., Wiktor-Jedrzejczak, W., Richardson, C., Dorrance, A., Stoklosa, T., Williams, D. A. and Skorski, T. 2012. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119, 4253-4263.   DOI
153 Agazie, Y. M., Movilla, N., Ischenko, I. and Hayman, M. J. 2003. The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene 22, 6909-6918.   DOI
154 Muhia, M., Feldon, J., Knuesel, I. and Yee, B. K. 2009. Appetitively motivated instrumental learning in SynGAP heterozygous knockout mice. Behav. Neurosci. 123, 1114-1128.   DOI
155 Muhia, M., Yee, B. K., Feldon, J., Markopoulos, F. and Knuesel, I. 2010. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP. Eur. J. Neurosci. 31, 529-543.   DOI
156 Muro, R., Nitta, T., Okada, T., Ideta, H., Tsubata, T. and Suzuki, H. 2015. The ras GTPase activating protein Rasal3 supports survival of naive T cells. PLoS One 10, e0119898.   DOI
157 Nabeshima, K., Shimao, Y., Inoue, T. and Koono, M. 2002. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett. 176, 101-109.   DOI
158 Nojima, H., Adachi, M., Matsui, T., Okawa, K., Tsukita, S. and Tsukita, S. 2008. IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade. Nat. Cell Biol. 10, 971-978.   DOI
159 Shin, Y., Kim, Y. W., Kim, H., Shin, N., Kim, T. S., Kwon, T. K., Choi, J. H. and Chang, J. S. 2018. RASAL3 preferentially stimulates GTP hydrolysis of the Rho family small GTPase Rac2. Biomed. Rep. 9, 241-246.
160 Shih, C., Padhy, L. C., Murray, M. and Weinberg, R. A. 1981. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290, 261-264.   DOI
161 Shinohara, N., Ogiso, Y., Tanaka, M., Sazawa, A., Harabayashi, T. and Koyanagi, T. 1997. The significance of Ras guanine nucleotide exchange factor, son of sevenless protein, in renal cell carcinoma cell lines. J. Urol. 158, 908-911.   DOI
162 Spurlock, G., Bennett, E., Chuzhanova, N., Thomas, N., Jim, H. P., Side, L., Davies, S., Haan, E., Kerr, B., Huson, S. M. and Upadhyaya, M. 2009 SPRED1 mutations (Legius syndrome): another clinically useful genotype for dissecting the neurofibromatosis type 1 phenotype. J. Med. Genet. 46, 431-437.   DOI
163 Stenmark, H. and Olkkonen, V. M. 2001. Rab GTPase family. Genome Biol. 2, reviews 3007.1-3007.7.
164 Chang, L. and Karin, M. 2001. Mammalian MAP kinase signalling cascades. Nature 410, 37-40.   DOI
165 Wong-Staal, F., Dalla-Favera, R., Gelmann, E. P., Manzari, V., Szala, S., Josephs, S. F. and Gallo, R. C. 1981. The v-sis transforming gene of simian sarcoma virus is a new onc gene of primate origin. Nature 294, 273-275.   DOI
166 Xie, D., Gore, C., Liu, J., Pong, R. C., Mason, R., Hao, G., Long, M., Kabbani, W., Yu, L., Zhang, H., Chen, H., Sun, X., Boothman, D. A., Min, W. and Hsieh, J. T. 2010. Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc. Natl. Acad. Sci. USA. 107, 2485-2490.   DOI
167 Xie, D., Gore, C., Zhou, J., Pong, R. C., Zhang, H., Yu, L., Vessella, R. L., Min, W. and Hsieh, J. T. 2009. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc. Natl. Acad. Sci. USA. 106, 19878-19883.   DOI
168 Colicelli, J. 2004. Human RAS superfamily proteins and related GTPases. Sci. STKE. 250, RE13.
169 Cooper, J. A. and Kashishian, A. 1993. In vivo binding properties of SH2 domains from GTPase-activating protein and phophatidylinositol 3-kinase. Mol. Cell Biol. 13, 1737-1745.   DOI
170 Cozier, G. E, Bouyoucef, D. and Cullen, P. J. 2003. Engineering the phosphoinositide-binding profile of a class I pleckstrin homology domain. J. Biol. Chem. 278, 39489-39496.   DOI
171 Anand, S., Majeti, B. K., Acevedo, L. M., Murphy, E. A., Mukthavaram, R., Scheppke, L., Huang, M., Shields, D. J., Lindquist, J. N., Lapinski, P. E., King, P. D., Weis, S. M. and Cheresh, D. A. 2010. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909-914.   DOI
172 Ahmadian, M. R., Hoffmann, U., Goody, R. S. and Wittinghofer, A. 1997. Individual rate constants for the interaction of Ras protein with GTPase-activating protein determined by fluorescence spectroscopy. Biochemistry 36, 4535-4541.   DOI
173 Ahmadian, M. R., Kiel, C., Stege, P. and Scheffzek, K. 2003. Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J. Mol. Biol. 329, 699-710.   DOI
174 Allen, M., Chu, S., Brill, S., Stotler, C. and Buckler, A. 1998. Restricted tissue expression pattern of a novel human rasGAP-related gene and its murine ortholog. Gene 218, 17-25.   DOI
175 Arafeh, R., Qutob, N., Emmanuel, R., Keren-Paz, A., Madore, J., Elkahloun, A., Wilmott, J. S., Gartner, J. J., Di Pizio, A., Winograd-Katz, S., Sindiri, S., Rotkopf, R., Dutton-Regester, K., Johansson, P., Pritchard, A. L., Waddell, N., Hill, V. K., Lin, J. C., Hevroni, Y., Rosenberg, S. A., Khan, J., Ben-Dor, S., Niv, M. Y., Ulitsky, I., Mann, G. J., Scolyer, R. A., Hayward, N. K. and Samuels, Y. 2015. Recurrent inactivating RASA2 mutations in melanoma. Nat. Genet. 47, 1408-1410.   DOI
176 Ballester, R., Marchuk, D., Boguski, M., Saulino, A., Letcher, R., Wigler, M. and Collins, F. 1990. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851-859.   DOI
177 Lapinski, P. E., Kwon, S., Lubeck, B. A., Wilkinson, J. E., Srinivasan, R. S., Sevick-Muraca, E. and King, P. D. 2012. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J. Clin. Invest. 122, 733-747.   DOI
178 Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F. and Kaibuchi, K. 2002. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873-885.   DOI
179 Gaul, U., Mardon, G. and Rubin, G. M. 1992. A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68, 1007-1009.   DOI
180 Lapinski, P. E., Doosti, A., Salato, V., North, P., Burrows, P. E. and King, P. D. 2018. Somatic second hit mutation of RASA1 in vascular endothelial cells in capillary malformation-arteriovenous malformation. Eur. J. Med. Genet. 61, 11-16.   DOI
181 Lapinski, P. E., Qiao, Y., Chang, C. H. and King, P. D. 2011. A role for p120 RasGAP in thymocyte positive selection and survival of naive T cells. J. Immunol. 187, 151-163.   DOI
182 Largaespada, D. A., Brannan, C. I., Jenkins, N. and Copeland, N. G. 1996. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat. Genet. 12, 137-143.   DOI
183 Guo, X., Hamilton, P. J., Reish, N. J., Sweatt, J. D., Miller, C. A. and Rumbaugh, G. 2009. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia. Neuropsychopharmacology 34, 1659-1672.   DOI
184 Ohta, M., Seto, M., Ijichi, H., Miyabayashi, K., Kudo, Y., Mohri, D., Asaoka, Y., Tada, M., Tanaka, Y., Ikenoue, T., Kanai, F., Kawabe, T. and Omata, M. 2009. Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression. Gastroenterology 136, 206-216.   DOI
185 Gioeli, D., Mandell, J. W., Petroni, G. R., Frierson, H. F. Jr. and Weber, M. J. 1999. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 59, 279-284.
186 Gitler, A. D., Kong, Y., Choi, J. K., Zhu, Y., Pear, W. S. and Epstein, J. A. 2004. Tie2-Cre-induced inactivation of a conditional mutant Nf1 allele in mouse results in a myeloproliferative disorder that models juvenile myelomonocytic leukemia. Pediatr. Res. 55, 581-584.   DOI
187 Grady, W. M. and Markowitz, S. D. 2002. Genetic and epigenetic alterations in colon cancer. Annu. Rev. Genomics Hum. Genet. 3, 101-128.   DOI
188 Guo, H. F., Tong, J., Hannan, F., Luo, L. and Zhong, Y. 2000. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403, 895-898.   DOI
189 Stowe, I. B., Mercado, E. L., Stowe, T. R., Bell, E. L., Oses-Prieto, J. A., Hernandez, H., Burlingame, A. L. and McCormick, F. 2012. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev. 26, 1421-1426.   DOI
190 Sun, D., Yu, F., Ma, Y., Zhao, R., Chen, X., Zhu, J., Zhang, C. Y., Chen, J. and Zhang, J. 2013. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J. Biol. Chem. 288, 9508-9518.   DOI
191 Liu, D., Yang, C., Bojdani, E., Murugan, A. K. and Xing, M. 2013. Identification of RASAL1 as a major tumor suppressor gene in thyroid cancer. J. Natl. Cancer Inst. 105, 1617-1627.   DOI
192 Laycock-van Spyk, S., Thomas, N., Cooper, D. N. and Upadhyaya, M. 2011. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum. Genomics 5, 623-690.   DOI
193 Le, D. T., Kong, N., Zhu, Y., Lauchle, J. O., Aiyigari, A., Braun, B. S., Wang, E., Kogan, S. C., Le Beau, M. M., Parada, L. and Shannon, K. M. 2004. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 103, 4243-4250.   DOI
194 Legius, E., Marchuk, D. A., Collins, F. S. and Glover, T. W. 1993. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat. Genet. 3, 122-126.   DOI
195 Xie, Y., Yan, J., Cutz, J. C., Rybak, A. P., He, L., Wei, F., Kapoor, A., Schmidt, V. A., Tao, L. and Tang, D. 2012. IQGAP2, A candidate tumour suppressor of prostate tumorigenesis. Biochim. Biophys. Acta. 1822, 875-884.   DOI
196 Xu, G.F., Lin, B., Tanaka, K., Dunn, D., Wood, D., Gesteland, R., White, R., Weiss, R. and Tamanoi, F. 1990. IQGAP1 and IQGAP2 are reciprocally altered in hepatocellular carcinoma. Cell 63, 835-841.   DOI
197 Xu, G. F., O'Connell, P., Viskochil, D., Cawthon, R., Robertson, M., Culver, M., Dunn, D., Stevens, J., Gesteland, R., White, R. and Weiss, R. 1990. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62, 599-608.   DOI
198 Cupit, L. D., Schmidt, V. A., Miller, F. and Bahou, W. F. 2004. Distinct PAR/IQGAP expression patterns during murine development: implications for thrombin-associated cytoskeletal reorganization. Mamm. Genome 15, 618-629.   DOI
199 Cozier, G. E., Lockyer, P. J., Reynolds, J. S., Kupzig, S., Bottomley, J. R., Millard, T. H., Banting, G. and Cullen, P. J. 2000. GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J. Biol. Chem. 275, 28261-28268.
200 Cullen, P. J. and Lockyer, P. J. 2002. Integration of calcium and Ras signalling. Nat. Rev. Mol. Cell. Biol. 3, 339-348.
201 D'Angelo, I., Welti, S., Bonneau, F. and Scheffzek, K. 2006. A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep. 7, 174-179.   DOI
202 Davletov, B. A. and Sudhof, T. C. 1993. A single C2 domain from synaptotagmin I is sufficient for high affinity $Ca^{2+}$/phospholipid binding. J. Biol. Chem. 268, 26386-26390.
203 Pasmant, E., Sabbagh, A., Hanna, N., Masliah-Planchon, J., Jolly, E., Goussard, P., Ballerini, P., Cartault, F., Barbarot, S., Landman-Parker, J., Soufir, N., Parfait, B., Vidaud, M., Wolkenstein, P., Vidaud, D. and France, R. N. 2009. SPRED1 germline mutations caused a neurofibromatosis type 1 overlapping phenotype. J. Med. Genet. 46, 425-430.   DOI
204 Osaki. M., Oshimura, M. and Ito, H. 2004. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676.   DOI
205 Ouyang, X., Jessen, W. J., Al-Ahmadie, H., Serio, A. M., Lin, Y., Shih, W. J., Reuter, V. E., Scardino, P. T., Shen, M. M., Aronow, B. J., Vickers, A. J., Gerald, W. L. and Abate-Shen, C. 2008. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 68, 2132-2144.   DOI
206 Pamonsinlapatham, P., Hadj-Slimane, R., Lepelletier, Y., Allain, B., Toccafondi, M., Garbay, C. and Raynaud, F. 2009. p120-Ras GTPase activating protein (RasGAP): a multi-interacting protein in downstream signaling. Biochimie 91, 320-328.   DOI
207 Pena, V., Hothorn, M., Eberth, A., Kaschau, N., Parret, A., Gremer, L., Bonneau, F., Ahmadian, M. R. and Scheffzek, K. 2008. The C2 domain of SynGAP is essential for stimulation of the Rap GTPase reaction. EMBO Rep. 9, 350-355.   DOI
208 Pereira-Leal, J. B. and Seabra, M. C. 2001. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889-901.   DOI
209 Sung, H., Kanchi, K. L., Wang, X., Hill, K. S., Messina, J. L., Lee, J. H., Kim, Y., Dees, N. D., Ding, L., Teer, J. K., Yang, S., Sarnaik, A. A., Sondak, V. K., Mule, J. J., Wilson, R. K., Weber, J. S. and Kim, M. 2016. Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget 7, 23885-23896.
210 Sun, L., Yao, Y., Shang, Z., Zhan, S., Shi, W., Pan, G., Zhu, X. and He, S. 2018. DAB2IP downregulation enhances the proliferation and metastasis of human gastric cancer cells by depressing the ERK1/2 pathway. Gasroenterol. Res. Pract. 2018, 2968252.
211 Tanaka, K., Nakafumi, M., Satoh, T., Marshall, M. S., Gibbs, J. B., Matsumoto, K. and Toh-e, A. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 9, 803-807.
212 Thomas, E. K., Cancelas, J. A., Chae, H. D., Cox, A. D., Keller, P. J., Perrotti, D., Neviani, P., Drucker, B. J., Setchell, K. D. R., Zheng, Y., Harris, C. E. and Williams, D. A. 2007. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 12, 467-478.   DOI
213 Trahey, M., Wong, G., Halenbeck, R., Rubinfeld, B., Martin, G. A. Lander, M., Long, C. M., Crosier, W. J., Watt, K., Koths, K. MaCormick, F. 1988. Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242, 1697-1700.   DOI
214 Yang, Y., Zhao, W., Xu, Q. W., Wang, X. S., Zhang, Y. and Zhang, J. 2014. IQGAP3 promotes EGFR-ERK signaling and the growth and metastasis of lung cancer cells. PLoS One 9, e97578.   DOI
215 Xu. X., Tan, X., Tampe, B., Nyamsuren, G., Liu, X., Maier, L. S., Sossalla, S., Kalluri, R., Zeisberg, M., Hasenfuss, G. and Zeisberg, E. M. 2015. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc. Res. 105, 279-291.   DOI
216 Yamamoto, T., Matsui, T., Nakafuku, M., Iwamatsu, A. and Kaibuchi, K. 1995. A novel GTPase-activating protein for R-Ras. J. Biol. Chem. 270, 30557-30561.   DOI
217 Yang, F. C., Kapur, R., King, A. J., Tao, W., Kim, C., Borneo, J., Breese, R., Marshall, M., Dinauer, M. C. and Williams, D. A. 2000. Rac2 stimulates Akt activation affecting BAD/ Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 12, 557-568.   DOI
218 Yano, M., Toyooka, S., Tsukuda, K., Dote, H., Ouchida, M., Hanabata, T., Aoe, M., Date, H., Gazdar, A. F. and Shimizu, N. 2005. Aberrant promoter methylation of human DAB2 interactive protein (hDAB2IP) gene in lung cancers. Int. J. Cancer 113, 59-66.   DOI
219 De Schepper, S., Maertens, O., Callens, T., Naeyaert, J. M., Lambert, J. and Messiaen, L. 2008. Somatic mutation analysis in NF1 cafe au lait spots reveals two NF1 hits in the melanocytes. J. Invest. Dermatol. 128, 1050-1053.   DOI
220 Davoli, T. 1., Xu, A. W., Mengwasser, K. E., Sack, L. M., Yoon, J. C., Park, P. J. and Elledge, S. J. 2013. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948-962.   DOI
221 de Wijn, R. S., Oduber, C. E., Breugem, C. C., Alders, M., Hennekam, R. C. and van der Horst, C. M. 2012. Phenotypic variability in a family with capillary malformations caused by a mutation in the RASA1 gene. Eur. J. Med Genet. 55, 191-195.   DOI
222 Bernard, A. 2003. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim. Biophysi. Acta. 1603, 47-82.
223 Baralle, M. and Baralle, D. 2012. Splicing mechanisms and mutations in the NF1 gene. In: Upadhyaya, M. and Cooper, D. (eds) Neurofibromatosis tyie 1. Springer, Berlin, Heidelberg. pp 135-150.
224 Basu, T. N., Gutmann, D. H., Fletcher, J. A., Glover, T. W., Collins, F. S. and Downward, J. 1992. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356, 713-715.   DOI
225 Bechtel, W., McGoohan, S., Zeisberg, E. M., Muller, G. A., Kalbacher, H., Salant, D. J., Muller, C. A., Kalluri, R. and Zeisberg, M. 2010. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544-550.   DOI
226 Blanc, L., Ciciotte, S. L., Gwynn, B., Hildick-Smith, G. J., Pierce, E. L., Soltis, K. A., Cooney, J. D., Paw, B. H. and Peters, L. L. 2012. Critical function for the Ras-GTPase activating protein RASA3 in vertebrate erythropoiesis and megakaryopoiesis. Proc. Natl. Acad. Sci. USA. 109, 12099-12104.   DOI
227 Bollag, G. Clapp, D. W., Shih, S., Adler, F., Zhang, Y. Y., Thompson, P., Lange, B. J., Freedman, M. H., McCormick, F., Jacks, T. and Shannon, K. 1996. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat. Genet. 12, 144-148.   DOI
228 Boon, L. M., Mulliken, J. B. and Vikkula, M. 2005. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr. Opin. Genet. Dev. 15, 265-269.   DOI
229 Liu, Q., Walker, S. A., Gao, D., Taylor, J. A., Dai, Y. F., Arkell, R. S., Bootman, M. D., Roderick, H. L., Cullen, P. J. and Lockyer, P. J. 2005. CAPRI and RASAL impose different modes of information processing on Ras due to contrasting temporal filtering of $Ca^{2+}$. J. Cell Biol. 170, 183-190.   DOI