Browse > Article
http://dx.doi.org/10.4014/jmb.2107.07045

Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production  

Ahmed, Aqsa (School of Biotechnology, Jiangnan University)
Ahmad, Abdullah (Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology)
Li, Renhan (School of Biotechnology, Jiangnan University)
AL-Ansi, Waleed (School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University)
Fatima, Momal (Department of Industrial Biotechnology, National Institute of Biotechnology and Genetic Engineering (NIBGE))
Mushtaq, Bilal Sajid (School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University)
Basharat, Samra (School of Biotechnology, Jiangnan University)
Li, Ye (School of Biotechnology, Jiangnan University)
Bai, Zhonghu (School of Biotechnology, Jiangnan University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.11, 2021 , pp. 1465-1480 More about this Journal
Abstract
Violacein, a purple pigment first isolated from a gram-negative coccobacillus Chromobacterium violaceum, has gained extensive research interest in recent years due to its huge potential in the pharmaceutic area and industry. In this review, we summarize the latest research advances concerning this pigment, which include (1) fundamental studies of its biosynthetic pathway, (2) production of violacein by native producers, apart from C. violaceum, (3) metabolic engineering for improved production in heterologous hosts such as Escherichia coli, Citrobacter freundii, Corynebacterium glutamicum, and Yarrowia lipolytica, (4) biological/pharmaceutical and industrial properties, (5) and applications in synthetic biology. Due to the intrinsic properties of violacein and the intermediates during its biosynthesis, the prospective research has huge potential to move this pigment into real clinical and industrial applications.
Keywords
Violacein; heterologous production; industrial applications; biological applications; synthetic biology; metabolic engineering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sun H, Zhao D, Xiong B, Zhang C, Bi C. 2016. Engineering Corynebacterium glutamicum for violacein hyper production. Microb. Cell Fact. 15: 1-9.   DOI
2 Hakvag S, Fjaervik E, Klinkenberg G, Borgos SE, Josefsen K, Ellingsen T, et al. 2009. Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trondelag, Norway. Mar. Drugs 7: 576-588.   DOI
3 Lopreside A, Wan X, Michelini E, Roda A, Wang B. 2019. Comprehensive profiling of diverse genetic reporters with application to whole-cell and cell-free biosensors. Anal. Chem. 91: 15284-15292.   DOI
4 Yamaguchi H, Tatsumi M, Takahashi K, Tagami U, Sugiki M, Kashiwagi T, et al. 2018. Protein engineering for improving the thermostability of tryptophan oxidase and insights from structural analysis. J. Biochem. 164: 359-367.   DOI
5 Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, Shirke AN, et al. 2015. ePathOptimize?: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci. Rep. 5: 11301.   DOI
6 Hoshino T. 2011. Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: Biosynthetic mechanism and pathway for construction of violacein core. Appl. Microbiol. Biotechnol. 91: 1463-1475.   DOI
7 Duran M, Ponezi AN, Faljoni-Alario A, Teixeira MFS, Justo GZ, Duran N. 2012. Potential applications of violacein: A microbial pigment. Med. Chem. Res. 21: 1524-1532.   DOI
8 Lamendella R, Jude BA. 2018. Draft genome sequences of violacein-producing Duganella sp. Isolates from a Waterway in Eastern Pennsylvania. Microbiol. Resour. Announc. 7. https://doi.org/10.1128/mra.01196-18.   DOI
9 Myeong NR, Seong HJ, Kim HJ, Sul WJ. 2016. Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1. J. Biotechnol. 223: 36-37.   DOI
10 Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ. 2015. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci. Rep. 5: 21.
11 Venil CK, Aruldass CA, Abd Halim MH, Khasim AR, Zakaria ZA, Ahmad WA. 2015. Spray drying of violet pigment from Chromobacterium violaceum UTM 5 and its application in food model systems. Int. Biodeterior. Biodegradtion 102: 324-329.   DOI
12 Choi SY, Lim S, Yoon K hye, Lee JI, Mitchell RJ. 2021. Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J. Biol. Eng. 15: 1-16.   DOI
13 Aye AM, Bonnin-Jusserand M, Brian-Jaisson F, Ortalo-Magne A, Culioli G, Nevry RK, et al. 2015. Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiol. (United Kingdom) 161: 2039-2052.   DOI
14 Atalah J, Blamey L, Munoz-Ibacache S, Gutierrez F, Urzua M, Encinas MV, et al. 2020. Isolation and characterization of violacein from an AntarcticIodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 24: 43-52.   DOI
15 Bromberg N, Dreyfuss JL, Regatieri C V., Palladino M V., Duran N, Nader HB, et al. 2010. Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chem. Biol. Interact. 186: 43-52.   DOI
16 Jiang PX, Wang HS, Zhang C, Lou K, Xing XH. 2010. Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl. Microbiol. Biotechnol. 86: 1077-1088.   DOI
17 Ryan KS, Balibar CJ, Turo KE, Walsh CT, Drennan CL. 2008. The violacein biosynthetic enzyme VioE shares a fold with lipoprotein transporter proteins. J. Biol. Chem. 283: 6467-6475.   DOI
18 August PR, Grossman TH, Minor C, Draper MP, Macneil IA, Pemberton JM, et al. 2000. Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J. Mol. Microbiol. Biotechnol. 2: 513-519.
19 Kuzyk SB, Pritchard AO, Plouffe J, Sorensen JL, Yurkov V. 2020. Psychrotrophic violacein-producing bacteria isolated from Lake Winnipeg, Canada. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2020.04.008.   DOI
20 Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA. 2018. Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ. Sci. Pollut. Res. 25: 5164-5180.   DOI
21 Fang MY, Zhang C, Yang S, Cui JY, Jiang PX, Lou K, et al. 2015. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb. Cell Fact. 14: 1-13.   DOI
22 Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, et al. 2016. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumor. Biol. 37: 3705-3717.   DOI
23 Alshatwi AA, Subash-Babu P, Antonisamy P. 2015. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Exp. Toxicol. Pathol. 68: 89-97.   DOI
24 Duran N, Justo GZ, Duran M, Brocchi M, Cordi L, Tasic L, et al. 2016. Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review. Biotechnol. Adv. 34: 1030-1045.   DOI
25 Wong L, Engel J, Jin E, Holdridge B, Xu P. 2017. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab. Eng. Commun. 5: 68-77.   DOI
26 Gu Y, Zhu Y, Ding X, Xu P. 2020. Engineering Yarrowia lipolytica as a Chassis for De Novo synthesis of five aromatic-derived natural products and chemicals. ACS Synth. Biol. 9: 2096-2106.   DOI
27 Saraiva VS, Marshall JC, Cools-Lartigue J, Burnier MN. 2004. Cytotoxic effects of violacein in human uveal melanoma cell lines. Melanoma Res. 14: 421-424.   DOI
28 Subramaniam S, Ravi V, Sivasubramanian A. 2014. Pharmaceutical biology synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms. John M Pezzuto Pharm. Biol. 52: 86-90.   DOI
29 Borodina I, Nielsen J. 2014. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9: 609-620.   DOI
30 Arif S, Batool A, Khalid N, Ahmed I, Janjua HA. 2017. Comparative analysis of stability and biological activities of violacein and starch capped silver nanoparticles. RSC Adv. 7: 4468-4478.   DOI
31 Chuang J, Boeke JD, Mitchell LA. 2018. Coupling yeast golden gate and VEGAS for efficient assembly of the violacein pathway in saccharomyces cerevisiae. Methods Mol. Biol. vol. 1671, pp. 211-225. Humana Press Inc.   DOI
32 Leal AMDS, De Queiroz JDF, De Medeiros SRB, Lima TKDS, Agnez-Lima LF. 2015. Violacein induces cell death by triggering mitochondrial membrane hyperpolarization in vitro Signaling and cellular microbiology. BMC Microbiol. 15: 115.   DOI
33 Berti IR, Rodenak-Kladniew B, Perez AA, Santiago L, Duran N, Castro GR. 2019. Development of biocarrier for violacein controlled release in the treatment of cancer. React. Funct. Polym. 136: 122-130.   DOI
34 de Boer W, Leveau JHJ, Kowalchuk GA, Klein Gunnewiek PJA, Abeln ECA, Figge MJ, et al. 2004. Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int. J. Syst. Evol. Microbiol. 54: 857-864.   DOI
35 Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, et al.2008. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the Salamander Plethodon cinereus. J. Chem. Ecol. 34: 1422-1429.   DOI
36 Fuller JJ, Ropke R, Krausze J, Rennhack KE, Daniel NP, Blankenfeldt W, et al. 2016. Biosynthesis of violacein, structure and function of L-tryptophan oxidase VioA from Chromobacterium violaceum. J. Biol. Chem. 291: 20068-20084.   DOI
37 Yang C, Jiang P, Xiao S, Zhang C, Lou K, Xing XH. 2011. Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol. Biochem. Eng. J. 57: 55-62.   DOI
38 Park HA, Park SA, Yang YH, Choi KY. 2021. Microbial synthesis of violacein pigment and its potential applications. Crit. Rev. Biotechnol. 41: 879-901.   DOI
39 Balibar CJ, Walsh CT. 2006. In vitro biosynthesis of violacein from L-tryptophan by the enzymes VioA-E from Chromobacterium violaceum. Biochemistry 45: 15444-15457.   DOI
40 Sanchez C, Brana AF, Mendez C, Salas JA. 2006. Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. ChemBioChem. 7: 1231-1240.   DOI
41 Wang H, Jiang P, Lu Y, Ruan Z, Jiang R, Xing XH, et al. 2009. Optimization of culture conditions for violacein production by a new strain of Duganella sp. B2. Biochem. Eng. J. 44: 119-24.   DOI
42 Wang H, Wang F, Zhu X, Yan Y, Yu X, Jiang P, et al. 2012. Biosynthesis and characterization of violacein, deoxyviolacein and oxyviolacein in heterologous host, and their antimicrobial activities. Biochem. Eng. J. 67: 148-155.   DOI
43 Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Stevenson A, Hallsworth JE, et al. 2015. Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int. J. Cosmet. Sci. 37: 98-107.   DOI
44 Lai H-E, Obled AMC, Chee SM, Morgan RM, Lynch R, Sharma S V, et al. 2016. A GenoChemetic strategy for derivatization of the violacein natural product scaffold. BioRxiv 2021: 202523.
45 Ericsson Unnerstad H, Lindberg A, Persson Waller K, Ekman T, Artursson K, Nilsson-Ost M, et al. 2009. Microbial aetiology of acute clinical mastitis and agent-specific risk factors. Vet. Microbiol. 137: 90-97.   DOI
46 Cazoto LL, Martins D, Ribeiro MG, Duran N, Nakazato G. 2011. Antibacterial activity of violacein against Staphylococcus aureus isolated from Bovine Mastitis. J. Antibiot. (Tokyo) 64: 395-397.   DOI
47 Subramaniam S, Ravi V, Sivasubramanian A. 2014. Synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms. Pharm. Biol. 52: 86-90.   DOI
48 Martins D, Costa FTM, Brocchi M, Duran N. 2011. Evaluation of the antibacterial activity of poly-(d,l-lactide-co-glycolide) nanoparticles containing violacein. J. Nanoparticle Res. 13: 355-363.   DOI
49 Gao A, Chen H, Hou A, Xie K. 2019. Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles. Mater. Sci. Eng. C 103: 109821.   DOI
50 Geraldine Asencio, Paris Lavin, Karen Alegria, Mariana Dominguez, Helia Bello, Gerardo Gonzalez-Rocha, et al. 2014. Antibacterial activity of the Antarctic bacterium Janthinobacterium sp: SMN 33.6 against multi-resistant Gram-negative bacteria. Electron. J. Biotechnol. 17: 1-5.   DOI
51 Lee YR, Mitchell RJ, Whang KS. 2016. Isolation and characterization of antifungal violacein producing bacterium Collimonas sp. DEC-B5. Korean J. Microbiol. 52: 212-219.   DOI
52 Choi SY, Lim S, Cho G, Kwon J, Mun W, Im H, et al. 2020. Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles. Environ. Microbiol. 22: 705-713.   DOI
53 Sasidharan A, Sasidharan NK, Amma DBNS, Vasu RK, Nataraja AV, Bhaskaran K. 2015. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522). J. Microbiol. 53: 694-701.   DOI
54 Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, et al. 2018. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75: 1049-1062.   DOI
55 Andrighetti-Frohner CR, Antonio R V, Creczynski-Pasa TB, Barardi CRM, Simoes CMO. 2003. Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem. Inst. Oswaldo Cruz 98: 843-848.   DOI
56 Lopes SCP, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FLS, Goelnitz U, et al. 2009. Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicrob. Agents Chemother. 53: 2149-2152.   DOI
57 Pauer H, Hardoim CCP, Teixeira FL, Miranda KR, Barbirato D da S, Carvalho DP de, et al. 2018. Impact of violacein from Chromobacterium violaceum on the mammalian gut microbiome. PLoS One 13: e0203748.   DOI
58 Lee YJ, Bashyal P, Pandey RP, Sohng JK. 2019. Enzymatic and microbial biosynthesis of novel violacein glycosides with enhanced water solubility and improved anti-nematode activity. Biotechnol. Bioprocess Eng. 24: 366-374.   DOI
59 Rahul S, Chandrashekhar P, Hemant B, Bipinchandra S, Mouray E, Grellier P, et al. 2015. In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol. Int. 64: 353-356.   DOI
60 Ballestriero F, Daim M, Penesyan A, Nappi J, Schleheck D, Bazzicalupo P, et al. 2014. Antinematode activity of violacein and the role of the insulin/IGF-1 pathway in controlling violacein sensitivity in Caenorhabditis elegans. PLoS One 9: e109201.   DOI
61 Antonisamy P, Ignacimuthu S. 2010. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine 17: 300-304.   DOI
62 Pang L, Antonisamy P, Esmail GA, Alzeer AF, Al-Dhabi NA, Arasu MV, et al. 2020. Nephroprotective effect of pigmented violacein isolated from Chromobacterium violaceum in wistar rats. Saudi J. Biol. Sci. 27: 3307-3312.   DOI
63 Leon LL, Miranda CC, De Souza AO, Duran N. 2001. Antileishmanial activity of the violacein extracted from Chromobacterium violaceum [4]. J. Antimicrob. Chemother. 48: 449-450.   DOI
64 March JC, Bentley WE. 2004. Quorum sensing and bacterial cross-talk in biotechnology. Curr. Opin. Biotechnol. 15: 495-502.   DOI
65 Liu X-X, Li Y, Bai Z-H. Corynebacterium glutamicum as a robust microbial factory for production of value-added proteins and small molecules: fundamentals and applications. Microb. Cell Fact. Eng. Prod. Biomol., Elsevier. 2021: 235-263.
66 Yang D, Yoo SM, Gu C, Ryu JY, Lee JE, Lee SY. 2019. Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metab Eng 54: 180-190.   DOI
67 Li T, Chen X, Cai Y, Dai J. 2018. Artificial Protein Scaffold System (AProSS): an efficient method to optimize exogenous metabolic pathways in Saccharomyces cerevisiae. Metab. Eng. 49: 13-20.   DOI
68 Rantasalo A, Kuivanen J, Penttila M, Jantti J, Mojzita D. 2018. Synthetic toolkit for complex genetic circuit engineering in Saccharomyces cerevisiae. ACS Synth. Biol. 7: 1573-1587.   DOI
69 Gwon D, Seok JY, Jung GY, Lee JW. 2021. Biosensor-assisted adaptive laboratory evolution for violacein production. Int. J. Mol. Sci. 22: 6594.   DOI
70 Alem D, Marizcurrena JJ, Saravia V, Davyt D, Martinez-Lopez W, Castro-Sowinski S. 2020. Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J. Microbiol. Biotechnol. 36: 1-11.   DOI
71 Antonisamy P, Kannan P, Ignacimuthu S. 2009. Anti-diarrhoeal and ulcer-protective effects of violacein isolated from Chromobacterium violaceum in Wistar rats. Fundam Clin. Pharmacol. 23: 483-490.   DOI
72 Pandey AK, Verma S. 2020. Combination drug therapy for multimodal treatment of cancer by targeting mitochondrial transcriptional pathway: an in-silico approach. Med. Hypotheses 143: 110075.   DOI
73 Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE. 2013. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 41: 10668-10678.   DOI
74 DeLoache WC, Russ ZN, Dueber JE. 2016. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun. 7: 11152.   DOI
75 Hui CY, Guo Y, Liu L, Zhang NX, Gao CX, Yang XQ, et al. 2020. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC Adv. 10: 28106-28113.   DOI
76 Tong Y, Zhou J, Zhang L, Xu P. 2019. Engineering oleaginous yeast Yarrowia lipolytica for violacein production: extraction, quantitative measurement and culture optimization 1: 1-19.
77 Hoff J, Daniel B, Stukenberg D, Thuronyi BW, Waldminghaus T, Fritz G.2020. Vibrio natriegens: an ultrafast-growing marine bacterium as emerging synthetic biology chassis. Environ. Microbiol. 22: 4394-4408.   DOI
78 Ellis GA, Tschirhart T, Spangler J, Walper SA, Medintz IL, Vora GJ. 2019. Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production. Mar. Drugs 17: 679.   DOI
79 Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS. 2018. Metabolic engineering in the host Yarrowia lipolytica. Metab. Eng. 50: 192-208.   DOI
80 Schaeffer N, Kholany M, Veloso TLM, Pereira JL, Ventura SPM, Nicaud JM, et al. 2019. Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chem. Commun. 55: 8643-8646.   DOI
81 Grewal PS, Samson JA, Baker JJ, Choi B, Dueber JE. 2020. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat. Chem. Biol.
82 Moore SJ, Lai HE, Kelwick RJR, Chee SM, Bell DJ, Polizzi KM, et al. 2016. EcoFlex: a multifunctional MoClo kit for E. coli synthetic biology. ACS Synth. Biol. 5: 1059-1069.   DOI
83 Zhou Y, Li G, Dong J, Xing X hui, Dai J, Zhang C. 2018. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.Metab. Eng. 47: 294-302.   DOI
84 Ofek M, Hadar Y, Minz D. 2012. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One 7: e40117.   DOI
85 Vareda JP, Valente AJM, Duraes L. 2019. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J. Environ. Manage 246: 101-118.   DOI
86 Guo Y, Hui C, Liu L, Chen M, Huang H. 2021. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci. Rep. 11: 1-13.   DOI
87 Mendes AS, De Carvalho JE, Duarte MCT, Duran N, Bruns RE. 2001. Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol. Lett. 23: 1963-1969.   DOI
88 Sawipak S, Research SW-P in N, 2006 U. The study of bacteria producing bluish-purple pigment and use for cotton dyeing.
89 Yang D, Park SY, Lee SY. 2021. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv. Sci. 8: 2100743.   DOI
90 Bisht G, Srivastava S, Kulshreshtha R, Sourirajan A, Baumler DJ, Dev K. 2020. Applications of red pigments from psychrophilic Rhodonellum psychrophilum GL8 in health, food and antimicrobial finishes on textiles. Process Biochem. 94: 15-29.   DOI
91 Aruldass CA, Rubiyatno, Venil CK, Ahmad WA. 2015. Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Adv. 5: 51524-51536.   DOI
92 Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, et al. 2013. Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab. Eng 20: 29-41.   DOI
93 Zhang X, Enomoto K. 2011. Characterization of a gene cluster and its putative promoter region for violacein biosynthesis in Pseudoalteromonas sp. 520P1. Appl. Microbiol. Biotechnol. 90: 1963-1971.   DOI
94 Agematu H, Suzuki K, Tsuya H. 2011. Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil. Biosci. Biotechnol. Biochem. 75: 2008-2010.   DOI
95 Yada S, Wang Y, Zou Y, Nagasaki K, Hosokawa K, Osaka I, et al. 2008. Isolation and Characterization of two groups of novel marine bacteria producing violacein. Mar. Biotechnol. 10: 128-132.   DOI
96 Wang Y, Ikawa A, Okaue S, Taniguchi S, Osaka I, Yoshimoto A, et al. 2008. Quorum sensing signaling molecules involved in the production of violacein by Pseudoalteromonas. Biosci. Biotechnol. Biochem. 72: 1958-1961.   DOI
97 Dang HT, Komatsu S, Masuda H, Enomoto K. 2017. Characterization of LuxI and LuxR protein homologs of N-Acylhomoserine lactone-dependent quorum sensing system in Pseudoalteromonas sp. 520P1. Mar. Biotechnol. 19: 1-10.   DOI
98 Batista JH, da Silva Neto JF. 2017. Chromobacterium violaceum pathogenicity: updates and insights from genome sequencing of novel Chromobacterium Species. Front. Microbiol. 8: 2213.   DOI
99 Nakamura Y, Asada C, Sawada T. 2003. Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol. Bioprocess Eng. 8: 37-40.   DOI
100 Pontrelli S, Chiu TY, Lan EI, Chen FYH, Chang P, Liao JC. 2018. Escherichia coli as a host for metabolic engineering. Metab. Eng. 50: 16-46.   DOI
101 Kothari V, Sharma S, Padia D. 2017. Recent research advances on Chromobacteriumviolaceum. Asian Pac. J. Trop. Med. 10: 744-752.   DOI
102 Nakamura Y, Sawada T, Morita Y, Engineering ET-B. 2002. Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biotechem. Eng. J. 12: 79-86.   DOI
103 Kuzyk SB, Pritchard AO, Plouffe J, Sorensen JL, Yurkov V. 2021. Psychrotrophic violacein-producing bacteria isolated from Lake Winnipeg, Canada. J. Great Lakes Res. 47: 715-724.   DOI
104 Duran N, Menck CFM. 2001. Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit. Rev. Microbiol. 27: 201-222.   DOI
105 Zhou Y, Fang MY, Li G, Zhang C, Xing XH. 2018. Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(S) involved in violacein biosynthesis. Appl. Biochem. Biotechnol. 186: 909-916.   DOI
106 Kanelli M, Mandic M, Kalakona M, Vasilakos S, Kekos D, Nikodinovic-Runic J, et al. 2018. Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front Microbiol. 9: 1495.   DOI
107 Kanelli M, Mandic M, Kalakona M, Vasilakos S, Kekos D, Nikodinovic-Runic J, et al. 2018. Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front. Microbiol. 9: 1495.   DOI
108 Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, De Vries EGE, et al. 2013. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur. J. Cancer 49: 219-230.   DOI
109 Brady SF, Chao CJ, Handelsman J, Clardy J. 2001. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org. Lett. 3: 1981-1984.   DOI
110 Ahmetagic A, Pemberton JM. 2010. Stable high level expression of the violacein indolocarbazole anti-tumour gene cluster and the Streptomyces lividans amyA gene in E.coli K12. Plasmid 63: 79-85.   DOI
111 Tsukamot T, Yasuj H, Hata T, Hayasaka S, Kato H. 2000. Isolation of bacteria producing bluish-purple pigment and use for dyeing. vol. 34.
112 Venegas FA, Kollisch G, Mark K, Diederich WE, Kaufmann A, Bauer S, et al. 2019. The bacterial product violacein exerts an immunostimulatory effect via TLR8. Sci. Rep. 9: 13661.   DOI
113 Liu Z, Wang W, Zhu Y, Gong Q, Yu W, Lu X. 2013. Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum. FEMS Microbiol. Lett. 341: 37-44.   DOI
114 Xu X, Tian L, Zhang S, Jiang L, Zhang Z, Huang H. 2019. Complete genome sequence of Janthinobacterium sp. B9-8, a violaceinproducing bacterium isolated from low-temperature sewage. Microb. Pathog. 128: 178-183.   DOI
115 Lu Y, Wang L, Xue Y, Zhang C, Xing XH, Lou K, et al. 2009. Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochem. Eng. J. 43: 135-141.   DOI
116 Ambrozic Avgustin J, Zgur Bertok D, Kostanjsek R, Avgustin G. 2013. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek 103: 763-769.   DOI
117 Wang H, Lu Y, Xue Y, Ruan Z, Jiang R, Xing X, et al. 2008. Separation, purification and structure identification of purple pigments from Duganella B2. Huagong Xuebao/J. Chem. Ind. Eng. 59: 630-635.
118 Li W-J, Zhang Y-Q, Park D-J, Li C-T, Xu L-H, Kim C-J, et al. 2004. Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 54: 1811-1814.   DOI
119 MK Mannisto MH. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Elsevier 2006.
120 Ahmad WA, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF. 2012. Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl. Biochem. Biotechnol. 167: 1220-1234.   DOI
121 Fang M, Wang T, Zhang C, Bai J, Zheng X, Zhao X, et al. 2016. Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab. Eng. 33: 41-51.   DOI
122 Platt D, Amara S, Mehta T, Vercuyssee K, Myles EL, Johnson T, et al. 2014. Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem. Biophys. Res. Commun. 455: 107-112.   DOI
123 Antonisamy P, Kannan P, Aravinthan A, Duraipandiyan V, Valan Arasu M, Ignacimuthu S, et al. 2014. Gastroprotective activity of violacein isolated from Chromobacterium violaceum on indomethacin-induced gastric lesions in rats: investigation of potential mechanisms of action. ScientificWorldJournal 2014: 616432.
124 Verinaud L, Lopes SCP, Prado ICN, Zanucoli F, Costa TA da, Gangi R Di, et al. 2015. Violacein treatment modulates acute and chronic inflammation through the suppression of cytokine production and induction of regulatory T cells. PLoS One 2015: e0125409.
125 Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Duran N, Peppelenbosch MP. 2004. Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104: 1459-1464.
126 Hosokawa K, Soliev AB, Kajihara A, Enomoto K. 2016. Effects of a microbial pigment violacein on the activities of protein kinases. Cogent Biol. 2: 1259863.   DOI
127 Hashimi SM, Xu T, Wei MQ. 2015. Violacein anticancer activity is enhanced under hypoxia. Oncol. Rep 33: 1731-1736.   DOI
128 Gomez-Gomez B, Arregui L, Serrano S, Santos A, Perez-Corona T, Madrid Y. 2019. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: Violacein production and bacterial biofilm formation. Metallomics 11: 1104-1114.   DOI
129 Duran N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D. 2007. Violacein: properties and biological activities. Biotechnol.Appl. Biochem. 48: 127.   DOI
130 Wang D, Zheng Y, Fan X, Xu L, Pang T, Liu T, et al. 2020. Visual detection of Hg2+ by manipulation of pyocyanin biosynthesis through the Hg2+-dependent transcriptional activator MerR in microbial cells. J. Biosci. Bioeng. 129: 223-228.   DOI
131 Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S. 2007. Violacein and biofilm production in Janthinobacterium lividum. J. Appl. Microbiol. 102: 992-999.   DOI